Patterns and Defects in Liquid Crystals

  • E. Bodenschatz
  • M. Kaiser
  • L. Kramer
  • W. Pesch
  • A. Weber
  • W. Zimmermann
Part of the NATO ASI Series book series (NSSB, volume 237)


The nonlinear behavior of electrohydrodynamic convection in planarly aligned nematic liquid crystals is reviewed. Based on two-dimensional, universal envelope descriptions we present new results on undulated roll structures in the vicinity of a normal-to-oblique roll transition, wavelength selection by the Eckhaus processes, dynamics and ordering of defects in travelling roll patterns (also applicable to homogeneous Hopf bifurcations), and mean-flow induced turbulence.


Hopf Bifurcation Free Boundary Condition Amplitude Equation Normal Roll Wavelength Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Zimmermann and L. Kramer, Phys. Rev. Lett. 55, 402 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    E. Bodenschatz, W. Zimmermann and L. Kramer, J. Phys. France 49, 1875 (1988).CrossRefGoogle Scholar
  3. 3.
    N. V. Madhusudana, V. A. Raghunathan and K. R. Sumathy, Pramana-J. Phys. 28, L 311 (1987);Google Scholar
  4. V. A. Raghunathan and N. V. Madhusudana, Pramana-J. Phys. 31, L 163 (1988);Google Scholar
  5. W. Thom, W. Zimmermann and L. Kramer, Liquid Crystals (in press).Google Scholar
  6. 4.
    N. V. Madhusudana and V. A. Raghunathan, Mol. Cryst. Liq. Cryst. Lett. 5, 201 (1988).Google Scholar
  7. 5.
    L. Kramer, E. Bodenschatz, W. Pesch, W. Thom and W. Zimmermann, submitted to Liquid Crystals.Google Scholar
  8. 6.
    W. Zimmermann and W. Thom, to be published.Google Scholar
  9. 7.
    S. Kai and K. Hirakawa, Suppl. Progr. Theor. Phys. 64, 212 (1978);ADSCrossRefGoogle Scholar
  10. S. Kai and K. Hirakawa, Mem. Fac. Engin. Kyushu Univ. 36, 269 (1977).Google Scholar
  11. 8.
    A. Joets and R. Ribotta, Phys. Rev. Lett. 60, 2164 (1988);ADSCrossRefGoogle Scholar
  12. I. Rehberg, S. Rasenat and V. Steinberg, preprint 1988.Google Scholar
  13. 9.
    A. Joets and R. Ribotta, in “Cellular Structures in Instabilities”, J. E. Wesfreid and S. Zaleski, Eds. ( Springer, Berlin ) 1984, p. 294;Google Scholar
  14. R. Ribotta, A. Joets and Lin Lei, Phys. Rev. Lett. 56, 1595 (1986);ADSCrossRefGoogle Scholar
  15. A. Joets and R. Ribotta, J. Phys. France 47, 595 (1986).CrossRefGoogle Scholar
  16. 10.
    M. Kaiser, Diploma thesis, Bayreuth, 1988;Google Scholar
  17. M. Kaiser, W. Pesch and E. Bodenschatz, to be published.Google Scholar
  18. 11.
    W. Pesch and L. Kramer, Z. Phys. B63, 121 (1986).CrossRefGoogle Scholar
  19. 12.
    L. Kramer, E. Bodenschatz, W. Pesch and W. Zimmermann, in “The Physics of Structure Formation”, W. Güttinger and G. Danglmayr, eds. ( Springer-Verlag, Heidelberg, 1987 ) p. 136.Google Scholar
  20. 13.
    A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279 (1969);ADSMATHCrossRefGoogle Scholar
  21. L. A. Segel, J. Fluid Mech. 38, 203 (1969).ADSMATHCrossRefGoogle Scholar
  22. 14.
    S. Kai in “Noise in Nonlinear Dynamical Systems”, P.V. E. Mc Clintock and F. Moss, eds. (Cambridge University Press, 1987 );Google Scholar
  23. H. Yamazaki, S. Kai and K. Hirakawa, J. Phys. Soc. Japan 56, 1 (1987).ADSCrossRefGoogle Scholar
  24. 15.
    V. Steinberg, J. Feinberg, E. Moses and I. Rehberg, preprint 1988.Google Scholar
  25. 16.
    P. Coullet, L. Gil, and J. Lega, preprint 1988 and this conference.Google Scholar
  26. 17.
    See e.g. M. Abromowitz and I. Stegun, “Handbook of Mathematical Functions” (Dover, New York, 1965) Chapts. 16 and 17.Google Scholar
  27. 18.
    M. Lowe and J. Gollub, Phys. Rev. Lett. 55, 2575 (1985).ADSCrossRefGoogle Scholar
  28. 19.
    L. Kramer and W. Zimmermann, Physica D16, 221 (1985).MATHGoogle Scholar
  29. 20.
    E. Bodenschatz and L. Kramer, Physica D27, 249 (1987).MATHGoogle Scholar
  30. 21.
    W.H. Zurek, Nature 317, 505 (1985).ADSCrossRefGoogle Scholar
  31. 22.
    L. Kramer, H. Schober and W. Zimmermann, Physica D31, 212 (1988).MATHGoogle Scholar
  32. 23.
    E. Bodenschatz, W. Pesch and L. Kramer, Physica D32, 135 (1988).MATHGoogle Scholar
  33. 24.
    A.C. Newell, Lect. appl. Math. 15, 157 (1974).MathSciNetGoogle Scholar
  34. 25.
    J.T. Stewart and R.C. DiPrima, Proc. R. Soc. London A362, 27 (1978).ADSCrossRefGoogle Scholar
  35. 26.
    W. Zimmermann, Doctoral thesis, Bayreuth, 1987.Google Scholar
  36. 27.
    P. Coullet and J. Lega, Europhys. Lett. 7, 511 (1988).ADSCrossRefGoogle Scholar
  37. 28.
    L. Gil, J. Lega and J.L. Meunier, preprint 1988.Google Scholar
  38. 29.
    P.S. Hagan, SIAM J. Appl. Math, 42 762 (1982).MATHGoogle Scholar
  39. 30.
    Y. Kuramoto “Chemical Oscillations, Waves and Turburlence” ( Springer, Berlin, 1984 ) P 106.Google Scholar
  40. 31.
    L. Gil and J. Lega, private communication.Google Scholar
  41. 32.
    S. Kai (private communication) and M. de la Torre, I. Rehberg (private communication).Google Scholar
  42. 33.
    See e.g. F.H. Busse,Rep.Prog.Phys., 41, 1931, (1978).ADSCrossRefGoogle Scholar
  43. 34.
    E.Siggia and A.Zippelius Phys.Fluids 26,2905,(1983).ADSMATHCrossRefGoogle Scholar
  44. 35.
    F.H. Busse and E.W. Bolton J.Fluid Mech. 146, 115, (1984).ADSMATHCrossRefGoogle Scholar
  45. 36.
    A.J. Bernoff,Univ.of Arizona,Tuscon (Preprint 1986).Google Scholar
  46. 37.
    P.Coullet,P.Huerre and R.Yang (This conference).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • E. Bodenschatz
    • 1
  • M. Kaiser
    • 1
  • L. Kramer
    • 1
  • W. Pesch
    • 1
  • A. Weber
    • 1
  • W. Zimmermann
    • 1
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthFed. Rep. of Germany

Personalised recommendations