Recent Results on the Non-Linear Dynamics of Curved Premixed Flames

  • Guy Joulin
Part of the NATO ASI Series book series (NSSB, volume 237)


Any theoretical study of problems of flame propagation in turbulent flows encounters difficulties of various origins: instabilities, non-linearity, non-locality, evolving curved geometries, wide spectra... This extended summary reports on recent analytical models which tackle them.


Flame Propagation Premix Flame Flame Speed Laminar Flame Hydrodynamic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clavin, P. and Joulin, G., 1983, Premixed flames in large-scale, high-intensity turbulent flows, J. Phys. Lettres, 1: L1.CrossRefGoogle Scholar
  2. Denet, B., 1988, Simulation numérique d’instabilités de fronts de flammes, Thèse de l’Université de Provence.Google Scholar
  3. Joulin, G., 1987, On the hydrodynamic stability of flat burner flames, Comb. Sci. Tech., 53: 315.CrossRefGoogle Scholar
  4. Joulin, G., 1988a, On a model for the response of unstable premixed flames to turbulence, Comb. Sci. Tech., in press.Google Scholar
  5. Joulin, G., 1988b, On the hydrodynamic stability of curved premixed flames, J. Phys., submitted.Google Scholar
  6. Joulin, G., 1988c, On the non-linear theory of hydrodynamic instabilities of expanding flames, in preparation.Google Scholar
  7. Landau, L. D., 1944, On the theory of slow combustion, Acta Phys. Chim., 19: 77.Google Scholar
  8. Lee, Y. C. and Chen, H. H., 1982, Non-linear dynamical models of plasma turbulence, Phys. Scripta, T2: 41.MathSciNetADSCrossRefGoogle Scholar
  9. Pergamon, N.Y. Michelson, D. M. and Sivashinsky, G. I., 1977, Nonlinear analysis of hydrodynamic instabilities in laminar flames, Acta Astro., 4: 1207.CrossRefGoogle Scholar
  10. Michelson, D. M. and Sivashinsky, G. I., 1983, Thermal-expansion-induced cellular flames, Comb. Flame, 48: 211.CrossRefGoogle Scholar
  11. Palm-Leis, A. and Strehlow, R. A., 1969, On the propagation of turbulent flames, Comb. Flame, 13: 111.CrossRefGoogle Scholar
  12. Pelcé, P. and Clavin, P., 1987, Curved front stability, Europhys. Lett., 3: 907.ADSCrossRefGoogle Scholar
  13. Sivashinsky, G. I., 1977, Nonlinear analysis of hydrodynamic instabilities in laminar flames, Acta Astro., 4: 1177.MathSciNetMATHCrossRefGoogle Scholar
  14. Thual, O., Frisch, U., and Henon, M., 1985, Application of pole decomposition to an equation governing the dynamics of wrinkled flame fronts, J. Phys., 46: 1485.CrossRefGoogle Scholar
  15. Zel’dovich, Y. B., Istratov, A. G., Kidin, N., and Librovich, V. B., 1980, Flame propagation in tubes: hydrodynamics and stability, Comb. Sci. Tech., 24: 1.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Guy Joulin
    • 1
  1. 1.U.A. 193 CNRS, ENSMAPoitiersFrance

Personalised recommendations