From the Chaos to Quasiregular Patterns

  • A. A. Chernikov
  • R. Z. Sagdeev
  • G. M. Zaslavsky
Part of the NATO ASI Series book series (NSSB, volume 237)


Phase portraits of dynamical systems produce certain kinds of patterns in their phase space. With help of web mapping it is possible to cover the plane with tiling of arbitrary quasicrystal symmetry. The connection between web-mapping and stationary Beltrami flows is established. New type of flows with quasicrystal symmetry is introduced. These flows have chaotic streamlines which display in real space different paterns with q-fold symmetry. Stochastic web is the region of space which separates the meshes of the pattern and inside of which Lagrangian turbulence of admixed particles is realized.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cellular Structures in Instabilities“, T.E. Wesfreid and S. Zaleski, eds., Springer—Verlag, Berlin (1984).Google Scholar
  2. 2.
    G.M. Zaslaysky, M.Yu. Zakharov, R.Z. Sagdeev, D.A. Usikov and A.A. Chernikov, Stochastic web and diffusion of particles in a magnetic field, Sov.Phys.JETP, 64: 294 (1987).MathSciNetGoogle Scholar
  3. 3.
    A.A. Chernikov, R.Z. Sagdeev, D.A. Usikov, M.Yu. Zakharov and G.M. Zaslaysky, Minimal chaos and stochastic webs, Nature, 326: 559 (1987).MathSciNetCrossRefGoogle Scholar
  4. 4.
    G.M. Zaslaysky, N.Yu. Zakharov, R.Z. Sagdeev, D.A. Usikov and A.A. Chernikov, Generation of ordered structures with a symmetry axis from a Hamiltonian dynamics, JETP Lett., 44: 451 (1987).MathSciNetGoogle Scholar
  5. 5.
    G.M. Zaslaysky, R.Z. Sagdeev and A.A. Chernikov, Chaos of streamlines in stationary flows, Zh.Eksp.Teor.Fiz., 94: 102 (1988).Google Scholar
  6. 6.
    V.I. Arhol’d, Sur la topologie des ecoulements stationnaires des fluides parfaits, Compt. Rendus, 261: 17 (1965).MATHGoogle Scholar
  7. 7.
    T. Dombre, U. Frisch, J.M. Green, M. Henon, A. Mehr and A.M. Soward, Chaotic streamlines in the ABC flows, J.Fluid Mech., 167: 353 (1986).MathSciNetCrossRefGoogle Scholar
  8. 8.
    A.A. Chernikov, R.Z. Sagdeev, D.A. Usikov and G.M. Zaslaysky, The Hamiltonian method for quasicrystal symmetry, Phys.Lett., 125A: 101 (1987).MathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. A. Chernikov
    • 1
  • R. Z. Sagdeev
    • 1
  • G. M. Zaslavsky
    • 1
  1. 1.Space Research InstituteMoscowUSSR

Personalised recommendations