Fractal Interpretation of Dielectric Response

  • G. A. Niklasson
  • K. Brantervik
  • I. A. Serbinov
Part of the NATO ASI Series book series (volume 167)


In this paper we put forward a fractal interpretation of the dielectric properties of disordered materials. In materials having charge carriers of low mobility, the dielectric permittivity ε(ω) = ε1(ω) + iε2(ω) often displays an anomalous low frequency dispersion1 (ALFD),
$$ {{\varepsilon }_{1}}(\omega )-{{\varepsilon }_{\infty }}\sim {{\varepsilon }_{2}}(\omega )\sim {{\omega }^{-p}},\omega <{{\omega }_{c}}{{\varepsilon }_{1}}(\omega )-{{\varepsilon }_{\infty }}\sim {{\varepsilon }_{2}}(\omega )\sim {{\omega }^{n-1}},\omega >{{\omega }_{c}} $$
Here ε is the high frequency dielectric constant, ωc is a crossover frequency, and the exponents p and n can have values between zero and unity. Below we relate the values of these exponents to the fractal structure of the material and to fractal time processes. The theory is used to interpret experiments on Co-Al2O3 composites, pyrolyzed polyimide and iron oxide films.


Dielectric Permittivity Fractal Structure Dielectric Response Crossover Frequency Renormalization Group Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Jonscher, Low-frequency dispersion in carrier-dominated dielectrics, Phil. Mag. B 38: 587 (1978).Google Scholar
  2. 2.
    H. Scher and M. Lax, Stochastic transport in a disordered solid, Phys. Rev. B 7: 4491 (1973).MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Alexander, J. Bernasconí, W. R. Schneider and R. Orbach, Excitation dynamics in random one-dimensional systems, Rev. Mod. Phys. 53: 175 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    S. Alexander and R. Orbach, Density of states on fractals: “fractons”, J. Phys. Lett. 43:L-625 (1982).Google Scholar
  5. 5.
    S. H. Liu, Fractals and their applications in condensed matter physics, Solid State Phys. 39: 207 (1986).CrossRefGoogle Scholar
  6. 6.
    M. F. Schlesinger and B.D. Hughes, Analogs of renormalization group transformations in random processes, Physica A 109: 597 (1981).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    S. Alexander, Anomalous transport properties for random-hopping and random-trapping models, Phys. Rev. B 23: 2951 (1981).CrossRefGoogle Scholar
  8. 8.
    A. Blumen, J. Klafter, B. S. White and G. Zumofen, Continuous-time random walk on fractals, Phys. Rev. Lett. 53: 1301 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • G. A. Niklasson
    • 1
  • K. Brantervik
    • 1
  • I. A. Serbinov
    • 1
  1. 1.Physics DepartmentChalmers University of TechnologyGothenburgSweden

Personalised recommendations