Effect of Rotational Diffusion on Quasi-Elastic Light Scattering from Fractal Clusters

  • H. M. Lindsay
  • R. Klein
  • D. A. Weitz
  • M. Y. Lin
  • P. Meakin
Part of the NATO ASI Series book series (volume 167)


The aggregation of colloids is of substantial interest both fundamentally and practically. The level of interest has risen in recent years with the observation that colloidal aggregates are often well characterized as scale-invariant, or fractal, objects, providing a quantitative description of the structure of these random, irregular clusters.1–4 The consequences of the scale invariance on light scattering from the clusters has been widely exploited. In static light scattering, the dependence of the scattering intensity on the scattering wave vector q allows a convenient way of determining the fractal dimension of the clusters, while Quasi-Elastic Light Scattering (QELS) has proved useful in monitoring the kinetics of the aggregation process. The combination of the scale-invariant structures of the aggregates and the power-law distributions which often occur leads to elegant scaling behavior of the dynamic light scattering.5,6 For the large clusters (qRg ≳1) often found in aggregation, rotational diffusion can play an important role in determining the decay of the autocorrelation of the scattered light measured in QELS. While scaling arguments have been used to account for the contribution of rotational diffusion, it is nonetheless important to determine this effect more quantitatively.


Fractal Dimension Autocorrelation Function Dynamic Light Scattering Rotational Diffusion Rotational Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Dimon, S. K. Sinha, D. A. Weitz, C. R. Safinya, G. S. Smith, W. A. Varady and H. M. Lindsay, Phys. Rev. Lett. 57, 595 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    D. A. Weitz, M. Y. Lin, J. S. Huang, T. A. Witten, S. K. Sinha, J. S. Gethner and R. C. Ball, in Scaling Phenomena in Disordered Systems,ed. R. Pynn and A. Skjeltorp (Plenum, New York:1985).Google Scholar
  3. 3.
    D. W. Schaefer, J. E. Martin, P. Wiltzius and D. Cannell, Phys. Rev. Lett. 52, 2371 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    D. A. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 54, 1416 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    J. E. Martin, this volume.Google Scholar
  6. 6.
    J. E. Martin and F. Leyvraz, Phys. Rev. A34, 2346 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    D. A. Weitz and M. Y. Lin, Phys. Rev. Lett. 57, 2037 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Chen, P. Sheng, D. A. Weitz, H. M. Lindsay, M. Y. Lin and P. Meakin, to be published.Google Scholar
  10. 10.
    B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York:1976).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • H. M. Lindsay
    • 1
  • R. Klein
    • 2
  • D. A. Weitz
    • 1
  • M. Y. Lin
    • 1
  • P. Meakin
    • 3
  1. 1.Exxon Research and EngAnnandaleUSA
  2. 2.Dept of PhysicsU. of KonstanzKonstanzGermany
  3. 3.E.I. DuPont Co.WillmingtonUSA

Personalised recommendations