Advertisement

Comparison of Domain Growth Kinetics in Two and Three Dimensions

  • Gary S. Grest
  • Michael P. Anderson
  • David J. Srolovitz
Part of the NATO ASI Series book series (volume 167)

Abstract

During the past five years, we1–4 have been investigating the kinetics of systems with a high ground state degeneracy which have been quenched from a high temperature disordered state, T>>Tc, to a final temperature below the transition temperature Tc. After the quench the system spontaneously develops local domains which are highly ordered. The average domain size then grows in order to reduce the excess free energy associated with the domain walls. For the non-conserved Ising model5, which has a ground state degeneracy of two, it has been known since the work of Lifshitz6 and Allen and Cahn7 that the correlation length R grows algebraically as t1/2 for all dimensions above one, This result has been well documented by both analytical5–11 and computer9,12–14 studies as well as experimental studies on ordered alloys7 (e.g., FeAl and CuAu). However five years ago little was known about the growth kinetics for more complex models which have a higher ground state degeneracy. Lifshitz5 was the first to predict slow kinetics in systems with several degenerate equilibrium states. Safranl5extended these arguments to show that domains may become pinned if the number of degenerate ground states Q≥d+l, where d is the dimension of space.

Keywords

Potts Model Ising Model Acta Metall Monte Carlo Step Domain Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Sahni, D. J. Srolovitz, G. S. Grest, M. P. Anderson and S. A. Safran, Phys. Rev. B28, 2705 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    M. P. Anderson, D. J. Srolovitz, G. S. Grest and P. S. Sahni, Acta Metall. 32, 783 (1984).CrossRefGoogle Scholar
  3. 3.
    D. J. Srolovitz, M. P. Anderson, P. S. Sahni and G. S. Grest, Acta Metall. 32, 793 (1984).CrossRefGoogle Scholar
  4. 4.
    M. P. Anderson, G. S. Grest and D. J. Srolovitz, Scripta Metall. 19, 225 (1985).CrossRefGoogle Scholar
  5. 5.
    For a review for the Ising model, see J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1983), Vol. 8, p. 267.Google Scholar
  6. K. Binder, Condensed Matter Research Using Neutrons, edited by S. W. Lovesey and R. Scherm ( Plenum, New York, 1985 ), p. 1.Google Scholar
  7. 6.
    I. M. Lifschitz, Zh. Eksp. Teor. Fiz. 42, 1354 (1962)Google Scholar
  8. I. M. Lifschitz,Sov. Phys.-JETP 15, 939 (1962).Google Scholar
  9. 7.
    S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).CrossRefGoogle Scholar
  10. 8.
    K. Kawasaki, M. C. Yalabik and J. D. Gunton, Phys. Rev. A 17, 455 (1978);ADSCrossRefGoogle Scholar
  11. T. Ohta, D. Jasnow and K. Kawaski, Phys. Rev. Lett. 49, 1223 (1982).ADSCrossRefGoogle Scholar
  12. 9.
    S. A. Safran, P. S. Sahni and G. S. Grest, Phys. Rev. B 28, 2693 (1983).ADSCrossRefGoogle Scholar
  13. 10.
    M. Grant and J. D. Gunton, Phys. Rev. B 28, 5496 (1983).ADSCrossRefGoogle Scholar
  14. 11.
    G. F. Mazenko and O. T. Valls, Phys. Rev. B 27, 6811 (1983)ADSCrossRefGoogle Scholar
  15. G. F. Mazenko, O. T. Valls and F. C. Zhang, Phys. Rev. B 31, 1579 (1985).ADSCrossRefGoogle Scholar
  16. 12.
    M. K. Phani, J. L. Lebowitz, M. H. Kalos, and O. Penrose, Phys. Rev. Lett. 45, 366 (1980);ADSCrossRefGoogle Scholar
  17. P. S. Sahni et al, Phys. Rev. B 24, 410 (1981).MathSciNetADSCrossRefGoogle Scholar
  18. 13.
    E. T. Gawlinski, M. Grant, J. D. Gunton and K. Kaski, Phys. Rev. B 31, 281 (1985).ADSCrossRefGoogle Scholar
  19. 14.
    J. Viñials, M. Grant, M. San Miguel, J. D. Gunton and E. T. Gawlinski, Phys. Rev. Lett. 54, 1264 (1985).ADSCrossRefGoogle Scholar
  20. 15.
    S. A. Safran, Phys. Rev. Lett. 46, 1581 (1981).ADSCrossRefGoogle Scholar
  21. 16.
    M. G. Lagally, G. C. Wang and T. M. Lu, CRC Crit. Rev. Solid State Mater Sci. 7, 233 (1978).ADSCrossRefGoogle Scholar
  22. 17.
    H. Homma and R. Clarke, Phys. Rev. Lett. 52, 629 (1984).ADSCrossRefGoogle Scholar
  23. 18.
    P. Feltham, Acta Metall. 5, 97 (1957).CrossRefGoogle Scholar
  24. 19.
    M. Hillert, Acta Metall. 13, 227 (1965).CrossRefGoogle Scholar
  25. 20.
    N. P. Louat, Acta Metall. 22, 721 (1974).CrossRefGoogle Scholar
  26. 21.
    P. K. Wu, J. H. Perepezko, J. T. McKinney and M. G. Lagally, Phys. Rev. Lett. 51, 1577 (1983).ADSCrossRefGoogle Scholar
  27. 22.
    G.-C. Wang and T.-M. Lu, Phys. Rev. Lett. 50, 2014 (1983).ADSCrossRefGoogle Scholar
  28. 23.
    F. Haessner, Recrystallization of Metallic Materials, edited by F. Haessner ( Riederer-Verlay, Stuttgart, 1978 ) p. 63.Google Scholar
  29. 24.
    O. Hunderi, N. Ryum and H. Westengen, Acta Metall. 27, 161 (1979);CrossRefGoogle Scholar
  30. O. Hunderi, N. Ryum and H. Westengen, Acta Metall. 29, 1737 (1981).CrossRefGoogle Scholar
  31. 25.
    V. Yu Novikov, Acta Metall. 26, 1739 (1978).CrossRefGoogle Scholar
  32. 25.
    V. Yu Novikov, Acta Metall. 27, 1461 (1979).CrossRefGoogle Scholar
  33. 26.
    J. Wejchert, D. Weaire and J. P. Kermode, Phil Mag. B53, 15 (1986).Google Scholar
  34. 27.
    O. G. Mouritsen, in Annealing Processes—Recovery, Re-crystallization and Grain Growth,Seventh Riso Internation Symposium on Metallurgy and Materials Science, 1986 (to be published).Google Scholar
  35. 28.
    K. Kaski, S. Kumar, J. D. Gunton and P. A. Rikvold, Phys. Rev. B29, 4420 (1984).ADSCrossRefGoogle Scholar
  36. 29.
    C. Dasgupta and R. Pandit, Phys. Rev. B33, 4752 (1986).ADSCrossRefGoogle Scholar
  37. 30.
    G. Mazenko, O. Valls and F. C. Zhang, Phys. Rev. B31, 4453 (1985);ADSCrossRefGoogle Scholar
  38. G. Mazenko, O. Valls and F. C. Zhang, Phys. Rev. B32, 5807 (1985);ADSCrossRefGoogle Scholar
  39. O. Valls and G. Mazenko (to be published).Google Scholar
  40. 31.
    D. Huse, Phys. Rev. B34, 7845 (1986).ADSCrossRefGoogle Scholar
  41. 32.
    M. P. Anderson, G. S. Grest and D. J. Srolovitz, Scripta Metall. 19, 225 (1985).CrossRefGoogle Scholar
  42. 33.
    P. A. Beck, M. L. Holzwarth and P. Sperry, Trans. AIME 180, 163 (1949).Google Scholar
  43. 34.
    D. J. Srolovitz and G. S. Grest, Phys. Rev. B32, 3021 (1985).ADSCrossRefGoogle Scholar
  44. 35.
    D. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708 (1985).ADSCrossRefGoogle Scholar
  45. 36.
    G. S. Grest and D. J. Srolovitz, Phys. Rev. B32, 3014 (1985).ADSCrossRefGoogle Scholar
  46. 37.
    D. Chowdhury, M. Grant and J. D. Gunton, Phys. Rev. B (1987)Google Scholar
  47. 38.
    A. Sadiq and K. Binder, J. Stat. Phys. 35, 617 (1984).MathSciNetCrossRefGoogle Scholar
  48. 39.
    J. Vials and J. D. Gunton, Surf. Sci. 157, 473 (1985).ADSCrossRefGoogle Scholar
  49. 40.
    A. B. Bortz, M. H. Kalos and J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975).ADSCrossRefGoogle Scholar
  50. 41.
    J. Viñials and J. D. Gunton, Phys. Rev. B33, 7795 (1986).ADSCrossRefGoogle Scholar
  51. 42.
    A. Milchev, K. Binder and D. W. Heermann, Z. Phys. B63, 521 (1986).ADSCrossRefGoogle Scholar
  52. 43.
    W. W. Mullins, J. Appl. Phys. 59, 1341 (1986).ADSCrossRefGoogle Scholar
  53. 44.
    J. von Neumann, in Metal Interfaces (ASM, Metals Park, Ohio, 1952 ), p. 108.Google Scholar
  54. 45.
    W. W. Mullins, J. Appl. Phys. 27, 900 (1956).MathSciNetADSCrossRefGoogle Scholar
  55. 46.
    G. S. Grest, M. P. Anderson and D. J. Srolovitz, in Computer Simulation of Microstructural Evolution, edited by D. J. Srolovitz ( Metallurgical Society, Warrendale, Pa, 1986 ), p. 21.Google Scholar
  56. 47.
    G. S. Grest, D. J. Srolovitz and M. P. Anderson, Phys. Rev. Lett. 52, 1321 (1984);ADSCrossRefGoogle Scholar
  57. G. S. Grest, D. J. Srolovitz and M. P. Anderson, Acta Metall. 33, 509 (1985).CrossRefGoogle Scholar
  58. 48.
    O. G. Mourtisen, Phys. Rev. Lett. 56, 850 (1986);ADSCrossRefGoogle Scholar
  59. O. G. Mourtisen, Phys. Rev. 31, 2613 (1985).ADSGoogle Scholar
  60. 49.
    O. G. Mourtisen and E. Praestgaard (to be published).Google Scholar
  61. 50.
    W. van Saarloos and M. Grant (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Gary S. Grest
    • 1
  • Michael P. Anderson
    • 1
  • David J. Srolovitz
    • 2
  1. 1.Corporate Research Science LaboratoryExxon Research and Engineering CompanyAnnandaleUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations