Glassy Relaxation in Charge Density Wave Systems

  • R. Rammal
  • P. B. Littlewood
Part of the NATO ASI Series book series (volume 167)


Slow thermal relaxation in random systems and glasses has been an important field of study for many years. While such properties have received much attention in glasses,1 spin-glasses2 and random field magnets,3 the behavior of pinned charge-density-wave (CDW) systems has received rather less study.4 Since the commonly used Fukuyama-Lee-Rice (FLR) model5 for sliding CDW’s is similar to that of a random-field XY model and therefore possesses many metastable states, one expects that processes involving thermal hopping over free energy barriers between such states would be the dominant mechanism at long times, or low temperatures.


Correlation Length Metastable State Spin Glass Electric Field Pulse Free Energy Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. C. E. Struik, in “Physical Aging in Amorphous Polymers and Other Materials”, (Elsevier, New York) (1978); K. L. Ngai, A. K. Rajagopal and C. Y. Huang, J. Appl. Phys. 55: 1716 (1984).Google Scholar
  2. 2.
    See M. Ocio, M. Alba and J. Hamman, J. Physique Lett. (Paris), 46: L 1101 (1985) and references therein.Google Scholar
  3. 3.
    A. R. King, J. A. Mydosh and V. Jaccarino, Phys. Rev. 55: 2525 (1986); R. J. Birgeneau, R. A. Cowley, G. Shirane and H. Yoshizawa, J. Stat. Phys. 34: 817 (1984).CrossRefGoogle Scholar
  4. 4.
    See “Charge Density Waves in Solids”, Lecture Notes in Physics, Vol. 217 ed. G. Hutiray and J. Solyom (Springer, Berlin, 1985).Google Scholar
  5. 5.
    H. Fukuyama and P. A. Lee, Phys. Rev. B17: 535 (1977), P. A. Lee and T. M. Rice Phys. Rev. B19: 3970 (1979).Google Scholar
  6. 6.
    G. Kriza and G. Mihaly, Phys. Rev. Lett. 56: 2529 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    R. M. Fleming, R. J. Cava, L. F. Schneemeyer, E. A. Rietman and R. G. Dunn, Phys. Rev. B33: 5450 (1986).ADSGoogle Scholar
  8. 8.
    P. B. Littlewood and R. Rammal, Phys. Rev. Lett. 58: 524 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    L. Sneddon, Phys. Rev. B30: 2974 (1984); D. S. Fisher, Phys. Rev. B31: 1396 (1985).CrossRefGoogle Scholar
  10. 10.
    P. B. Littlewood, Phys. Rev. B33: 6694 (1986).ADSGoogle Scholar
  11. 11.
    P. B. Littlewood, and R. Rammal, Phys. Rev. B xxx (1987).Google Scholar
  12. 12.
    R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53: 958 (1984); J. R. McDonald, Phys. 28: 485 (1962).Google Scholar
  13. 13.
    L. J. Sham and B. R. Patton, Phys. Rev. B13: 2151 (1976).Google Scholar
  14. 14.
    G. Parisi, Phys. Rev. Lett. 50: 1946 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. Rammal
    • 1
    • 2
  • P. B. Littlewood
    • 1
    • 2
  1. 1.AT&T Bell LaboratoriesMurray HillUSA
  2. 2.CRTBT-CNRSGrenobleFrance

Personalised recommendations