Role of Fluctuations in Fluid Mechanics and Dendritic Solidification

  • H. Eugene Stanley
Part of the NATO ASI Series book series (volume 167)


Our purpose is to review certain recent advances in understanding the role of fluctuations in fluid mechanics and dendritic solidification; many of these represent joint work of the author and J. Nittmann. If one understands completely the simple Ising model, then one understands virtually all systems near their critical points—although the detailed descriptions of many such systems requires a suitably-chosen variant of the Ising model (such as the XY or Heisenberg model). By analogy, we shall argue here that if one understands completely the simple diffusion-limited aggregation (DLA) model or the closely-related dielectric breakdown model (DBM), then one understands the role of fluctuations in a range of fluid mechanical systems, as well as in dendritic solidification. The detailed descriptions of some such systems requires suitably-chosen variants, such as DBM with anisotropy and noise reduction.


Fractal Dimension Random Walker Ising Model Noise Reduction Laplace Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AMITRANO, C., CONIGLIO, A., and DI LIBERTO, F., 1986, Phys. Rev. Lett., 57, 1016.ADSCrossRefGoogle Scholar
  2. BALL, R., 1986, Physica, 140A, 62CrossRefGoogle Scholar
  3. BEN-JACOB, E., GODBEY, R., GOLDENFELD, N. D., KOPLIK, J., LEVINE, H., MUELLER, T., and SANDER, L. M., 1985, Phys. Rev. Lett., 55, 1315.ADSCrossRefGoogle Scholar
  4. BEN-JACOB, E., GOLDENFELD, N., KOTLIER, B. G., and LANGER, J. S., 1984, Phys. Rev. Lett., 53, 2110.ADSCrossRefGoogle Scholar
  5. BENTLEY, W. A., and HUMPHREYS, W. J., 1962, Snow Crystals ( Dover, NY).Google Scholar
  6. BOCCARA, N. and DAOUD, M. (eds), 1985, Physics of Finely Divided Matter [Proceedings of the Winter School, Les Houches, 1985] (Springer Verlag, Heidelberg ).Google Scholar
  7. BUKA, A., KERTÉSZ, J., and VICSEK, T., 1986, Nature, 323, 424. CHANDRASEKHAR, S., 1943, Rev. Mod. Phys., 15, 1.Google Scholar
  8. CHEN, J. D. and WILKINSON, D., 1985, Phys. Rev. Lett., 55, 1985. CONIGLIO, A., 1982, J. Phys. A, 15, 3829.Google Scholar
  9. DACCORD, G., NITTMANN, J., and STANLEY, H. E., 1986, Phys. Rev. Lett., 56, 336.ADSCrossRefGoogle Scholar
  10. DOUGHERTY, A., KAPLAN, P. D., and GOLLUB, J. P., 1987, Phys. Rev. Lett. 58, 1652.ADSCrossRefGoogle Scholar
  11. FAMILY, F. and LANDAU, D. P. (eds), 1984, Kinetics of Aggregation and Gelation ( Elsevier, Amsterdam ).Google Scholar
  12. GAWLINSKI, E.T., and STANLEY, H. E., 1981, J. Phys. A., 14, L291 - L299.Google Scholar
  13. GEIGER, A., and STANLEY, H. E., 1982a, Phys. Rev. Lett., 49, 1749.ADSCrossRefGoogle Scholar
  14. GEIGER, A., and STANLEY, H. E., 1982b, Phys. Rev. Lett., 49, 1895.ADSCrossRefGoogle Scholar
  15. HALSEY, T. C., MEAKIN, P., and PROCACCIA, I., 1986, Phys. Rev. Lett., 56, 854.ADSCrossRefGoogle Scholar
  16. ISING, E., 1925, Ann. Physik, 31, 253–258.CrossRefGoogle Scholar
  17. KERTÉSZ, J., and VICSEK, T., 1986, J. Phys. A,. 19, L257.Google Scholar
  18. KERTÉSZ, J., STAUFFER, D., and CONIGLIO, A., 1985, Ann. Israel Phys. Soc. ( Adler, Deutscher and Zallen, eds ), p. 121–148.Google Scholar
  19. KESSLER, D., KOPLIK, J., and LEVINE, H., 1984, Phys. Rev. A, 30, 3161.ADSCrossRefGoogle Scholar
  20. LACHAPELLE, E. R., 1969, Field Guide to Snow Crystals (U. Washington Press, Seattle).Google Scholar
  21. LANGER, J. S., 1980, Rev. Mod. Phys., 52, 1.ADSCrossRefGoogle Scholar
  22. LENZ, W., 1920, Phys. Z., 21, 613–5.Google Scholar
  23. MALOY, K. J., FEDER, J., and JS SSANG, T., 1985, Phys. Rev. Lett., 55, 2688.ADSCrossRefGoogle Scholar
  24. MEAKIN, P., STANLEY, H. E., CONIGLIO, A., and WITTEN, T. A., 1985, Phys. Rev. A, 32, 2364.ADSCrossRefGoogle Scholar
  25. MEAKIN, P., CONIGLIO, A., STANLEY, H. E., and WITTEN, T. A., 1986, Phys. Rev. A, 34, 3325–3340.MathSciNetADSCrossRefGoogle Scholar
  26. MEAKIN, P., 1986a, J. Theor. Biol., 118, 101.MathSciNetCrossRefGoogle Scholar
  27. MEAKIN, P., 1986b, Proc. Israel Conference on Fracture. Google Scholar
  28. NAKAYA, U., 1954, Snow Crystals ( Harvard Univ Press, Cambridge).Google Scholar
  29. NIEMEYER, L., PIETRONERO, L., and WEISMANN, H. J., 1984, Phys. Rev. Lett., 52, 1033.MathSciNetADSCrossRefGoogle Scholar
  30. NITTMANN, J., DACCORD, G., and STANLEY, H. E., Nature 314, 141 (1985).ADSCrossRefGoogle Scholar
  31. NITTMANN, J., and STANLEY, H. E., 1986, Nature 321, 663–668.ADSCrossRefGoogle Scholar
  32. NITTMANN, J., and STANLEY, H. E., 1987a, Phys. Rev. Lett.,(submitted).Google Scholar
  33. NITTMANN, J., and STANLEY, H. E., 1987b (preprint).Google Scholar
  34. NITTMANN, J., STANLEY, H. E., TOUBOUL, E., and DACCORD, G., 1987, Phys. Rev. Lett., 58, 619.ADSCrossRefGoogle Scholar
  35. PIETRONERO, L. and TOSATTI, E. (eds), 1986, Fractals in Physics ( North Holland, Amsterdam ).Google Scholar
  36. PYNN, R. and SKJELTORP, A. (eds.), 1986, Scaling Phenomena in Disordered Systems ( Plenum, N.Y. ).Google Scholar
  37. SAITO, Y., GOLDBECK-WOOD, G., and MÙLLER-KRUMBHAAR, H., 1987, Phys. Rev. Lett., 58, 1541.ADSCrossRefGoogle Scholar
  38. STANLEY, H. E., 1977, J. Phys. A, 10, L211 - L220.ADSCrossRefGoogle Scholar
  39. STANLEY, H. E., 1987 Introduction to Fractal Phenomena (in press).Google Scholar
  40. STANLEY, H. E., and OSTROWSKY, N. (eds), 1986, On Growth and Form: Fractal and Non-Fractal Patterns in Physics ( Martinus Nijhoff, The Hague ).MATHGoogle Scholar
  41. TANG, C., 1985, Phys. Rev. A., 31, 1977.ADSCrossRefGoogle Scholar
  42. WITTEN, T. A., and SANDER, L. M., 1981, Phys. Rev. Lett., 47, 1400.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • H. Eugene Stanley
    • 1
  1. 1.Center for Polymer Studies and Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations