Advertisement

Self-Avoiding Walks Between Terminals on Percolation Clusters

  • Liv Furuberg
  • Amnon Aharony
  • Jens Feder
  • Torstein Jøssang
Part of the NATO ASI Series book series (volume 167)

Abstract

Many natural structures exhibit fractal geometry, and much recent interest has been devoted to studying the physical properties of such structures [1]. In the fractal regime, many of these properties depend on the length scale L via power laws, e.g. X(L) ~ L x . Often, one needs an infinite set of exponents, {x}, in order to fully characterize the structure [1]. We find that the various self-avoiding paths connecting two terminals on a percolating cluster scale with the Euclidean distance between the terminals. The different paths scale with different exponents forming a continuous spectrum.

Keywords

Fractal Dimension Percolation Threshold Fractal Geometry Terminal Point Opposite Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aharony, A., these proceedings.Google Scholar
  2. [2]
    Blumenfeld, R., Meir, Y., Harris, A. B. and Aharony, A., J. Phys. A19, L791 (1986)ADSGoogle Scholar
  3. [3]
    de Arcangelis, L., Coniglio, A. and Redner, S., J. Phys. A18, L805 (1985)Google Scholar
  4. [4]
    Grossman, T. and Aharony, A., unpublishedGoogle Scholar
  5. [5]
    Meir, Y., Blumenfeld, R., Harris, A. B. and Aharony, A., Phys. Rev. B (submitted)Google Scholar
  6. [6]
    Havlin, S. and Nossal, R., J. Phys. A17, L427 (1984) and referencesMathSciNetGoogle Scholar
  7. [7]
    Stanley, H. E., in ‘On Growth and Form ’, ed. H. E. Stanley and N. Ostrowsky ( Martinus Nijhoff, Dordrecht, 1986 ), p. 21Google Scholar
  8. [8]
    de Gennes, P. G., ‘Scaling Concepts in polymer Physics’ (Cornell University Press, Ithaca, N. Y. 1979 )Google Scholar
  9. [9]
    Kremer, K., Z. Phys. B45, 148 (1981)ADSGoogle Scholar
  10. [10]
    Kremer, K. and Lyklema, J. W., Phys. Rev. Lett. 54, 267 (1985)ADSCrossRefGoogle Scholar
  11. [11]
    Stanley, H. E., J. Phys. A10, L211 (1977)ADSGoogle Scholar
  12. [12]
    Grossman, T. and Aharony, A., J. Phys. A19, L745 (1986)ADSGoogle Scholar
  13. [13]
    Herrmann, H. J., Hong, D. C., and Stanley H. E., J. Phys. A17, L261 (1985)Google Scholar
  14. [14]
    Laidlaw, D., MacKay, G., and Jan, N., J. Stat. Phys. 46, 507 (1987)MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Stanley, H. E., these proceedingsGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Liv Furuberg
    • 1
  • Amnon Aharony
    • 1
    • 2
  • Jens Feder
    • 1
  • Torstein Jøssang
    • 1
  1. 1.Institute of PhysicsUniversity of OsloBlindern, Oslo 3Norway
  2. 2.School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations