Advertisement

Viscous Fingering on Percolation Clusters

  • Unni Oxaal
  • Michael Murat
  • Finn Boger
  • Amnon Aharony
  • Jens Feder
  • Torstein Jøssang
Part of the NATO ASI Series book series (volume 167)

Abstract

The physical phenomena that occur when a low-viscosity fluid is forced into a high-viscosity one, inside a porous medium (e.g. water pushing oil in a rock), are clearly of much practical interest. These phenomena became the center of much recent scientific interest when it was realized that under some conditions flow instabilities yield viscous fingers (VF) [1,2,3], that are fractal [4,5,6. Fractals are self-similar objects, which look the same at different magnifications [7].

Keywords

Fractal Dimension Percolation Threshold Finite Order Dielectric Breakdown Percolation Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    P.G. Saffman and G.I. Taylor, Proc. Roy. Soc. London, Ser A245, 312 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    L. Paterson, J. Fluid Mech. 113, 513 (1981).ADSCrossRefGoogle Scholar
  3. [3]
    R. Lenormand and C. Zarcone, Phys. Chem. Hydro. 6, 497 (1985).Google Scholar
  4. [4]
    J. Nittmann, G. Daccord, and H. E. Stanley, Nature (London) 314, 141 (1985).ADSCrossRefGoogle Scholar
  5. [5]
    K. J. MålØy, J. Feder, and T. JØssang, Phys. Rev. Lett. 55, 2688 (1985).ADSCrossRefGoogle Scholar
  6. [6]
    G. Daccord, J. Nittmann, and H. E. Stanley, Phys. Rev. Lett. 56, 336 (1986), and refcerences therein.Google Scholar
  7. [7]
    B. B. Mandelbrot, The Fractal Geometry of Nature ( Freeman, San Francisco, 1982 ).MATHGoogle Scholar
  8. [8]
    L. Niemeyer, L. Pietronero, and H. J. Wiessmann, Phys. Rev. Lett. 52 1033 (1984).MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and Y. Sawada, Phys. Rev. Lett. 53, 286 (1984).ADSCrossRefGoogle Scholar
  10. [10]
    T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981);ADSCrossRefGoogle Scholar
  11. D. A. Weitz and M. Oliviera, Phys. Rev. Lett. 52, 1433 (1983).ADSCrossRefGoogle Scholar
  12. [11]
    L. Paterson, Phys Rev. Lett. 52, 1621 (1984).ADSCrossRefGoogle Scholar
  13. [12]
    See also L. P. Kadanoff, J. Stat. Phys. 39, 267 (1985).MathSciNetADSCrossRefGoogle Scholar
  14. [13]
    J. Chen and D. Wilkinson, Phys. Rev. Lett. 55, 1892 (1985).ADSCrossRefGoogle Scholar
  15. [14]
    A. Kapitulnik, A. Aharony, G. Deutscher, and D. Stauffer, J. Phys. A 16, L269 (1983).ADSCrossRefGoogle Scholar
  16. [15]
    For example, A. Aharony, in Multicritical Phenomena, edited by R. Pynn and A. Skjeltorp ( Plenum, New York, 1984 ), p. 309;Google Scholar
  17. A. Aharony, in Directions in Condensed Matter Physics, edited by G. Grinstein and G. Mazenko ( World Scientific, Singapore, 1986 ), p. 1;Google Scholar
  18. D. Stauffer, Introduction to Percolation Theory(Taylor and Francis, London and Philadelphia, 1985 ).CrossRefGoogle Scholar
  19. [16]
    See also L. Nittmann and H. E. Stanley, Nature, (London) 321, 663 (1986);ADSCrossRefGoogle Scholar
  20. J. D. Sherwood and J. Nittmann, Journal de Phys. (Paris) 47, 15 (1986);CrossRefGoogle Scholar
  21. A. J. DeGregoria, Phys. Fluids 28, 2933 (1985).ADSMATHCrossRefGoogle Scholar
  22. [17]
    M. Murat and A. Aharony, Phys. Rev. Lett. 57, 1875 (1986).ADSCrossRefGoogle Scholar
  23. [18]
    B. Nienhuis, J. Phys. A 15, 199 (1982).MathSciNetADSCrossRefGoogle Scholar
  24. [19]
    H. J. Herrmann, D. C. Hong, and H. E. Stanley, J. Phys. A 17, L261 (1985).CrossRefGoogle Scholar
  25. Recently D. Laidlaw, G. MacKay, and N. Jan [J. Stat. Phys. (to be published)] found DB = 1.61 ± 0. 02.Google Scholar
  26. [20]
    J. Bonnet and R. Lenormand, Rev. Inst. Fr. Pet. 42, 477 (1977).Google Scholar
  27. [21]
    H. E. Stanley, J. Phys. A10, L211 (1977).ADSCrossRefGoogle Scholar
  28. [22]
    P. Meakin, H. E. Stanley, A. Coniglio and T. A. Witten, Phys. Rev. A 32, 2364 (1985).ADSCrossRefGoogle Scholar
  29. [23]
    A. Coniglio, Phys. Rev. Lett. 46, 250 (1981);ADSCrossRefGoogle Scholar
  30. A. Coniglio, J. Phys. A 15, 3829 (1982).MathSciNetADSCrossRefGoogle Scholar
  31. [24]
    Y. Gefen, A. Aharony, B. B. Mandelbrot ans S. Kirkpatrik, Phys. Rev. Lett. 47, 1771 (1981);MathSciNetADSCrossRefGoogle Scholar
  32. S. Kirkpatrick, AIP Conference Proceedings 58, 79 (1974).ADSCrossRefGoogle Scholar
  33. [25]
    P. Meakin, In On Growth and Form, edited by H. E. Stanley and N. Ostrowsky, ( Martinus Nijhoff, Boston, 1986 ), p. 111.Google Scholar
  34. [26]
    M. Eden, Proc. 4th Berkeley Symp. on Math. Stat. and Prob. 4, 223 (1961).MathSciNetGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Unni Oxaal
    • 1
  • Michael Murat
    • 2
  • Finn Boger
    • 1
  • Amnon Aharony
    • 2
  • Jens Feder
    • 1
  • Torstein Jøssang
    • 1
  1. 1.Institute of PhysicsUniversity of OsloBlindernOslo 3Norway
  2. 2.School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityIsrael

Personalised recommendations