On Multifractals: Thermodynamics and Critical Exponents

  • Preben Alstrøm
Part of the NATO ASI Series book series (volume 167)


Using the two-scale Cantor set as a starting point the thermodynamical formalism is discussed, including entropy, free energy, and dimensions. The connection to the f — α spectrum is illustrated, in particular when the probability measure is a Gibb’s ensemble. Regarding transitions to chaos as phase transitions critical exponents is defined. The way these enter the thermodynamics is outlined. As a main result the general interpretation of the cross-over scale as the scale where the system change from a fractal to a nonfractal behavior is shown to be ambiguous. As a representative example the global quasi-periodic transition (including noise) described by the sine map is treated.


Critical Exponent Hausdorff Dimension Entropy Function Characteristic Exponent Natural Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ruelle, Thermodynamic Formalism, in Encyclopedia of Mathematics and its Applica-tions, Vol. 5 edited by G.-C. Rota (Addison-Wesley, Massachusetts, 1978 ). T. Bohr and D. Rand, preprint (to appear in Physica D).MATHGoogle Scholar
  2. 2.
    M. J. Feigenbaum, preprint.Google Scholar
  3. 3.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    P. Alstrom and M. T. Levinsen, Phys. Rev. B 31, 2753 (1985); ibid. 32, 1503 (1985).MathSciNetADSGoogle Scholar
  5. P. Alstrom, B. Christiansen, P. Hyldgaard, M. T. Levinsen, and D. R. Rasmussen, Phys. Rev. A 34, 2220 (1986).ADSCrossRefGoogle Scholar
  6. 5.
    C. Domb and M. S. Green, Phase Transitions and Critical Phenomena (Academic Press, London, New York, 1972–76), see e.g. L. P. Kadanofh, Scaling, Universality, and Operator Algebras, in Vol. 5a, p. 1.Google Scholar
  7. 6.
    S. J. Shenker, Physica 5D, 405 (1982).MathSciNetGoogle Scholar
  8. 7.
    D. Stauffer, Phys. Rep. 54, 1 (1979); Introduction to Percolation Theory ( Taylor and Francis, London, 1985 ).Google Scholar
  9. 8.
    B. A. Huherman and J. Rudnick, Phys. Rev. Lett. 45, 154 (1980).MathSciNetADSCrossRefGoogle Scholar
  10. B. Shraiman, C. E. Wayne, and P. C. Martin, Phys. Rev. Lett. 46, 935 (1981).MathSciNetADSCrossRefGoogle Scholar
  11. M. J. Feigenbaum and B. Hasslacher, Phys. Rev. Lett. 49, 605 (1982).MathSciNetADSCrossRefGoogle Scholar
  12. J. P. Crutchfield, D. Farmer, and B. A. Huberman, Phys. Rep. 92, 45 (1982).MathSciNetADSCrossRefGoogle Scholar
  13. 9.
    H. G. E. Hentschel and I. Procaccia, Physica 8D, 435 (1983).MathSciNetMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Preben Alstrøm
    • 1
  1. 1.Nordisk Institut for Teoretisk AtomfysikCopenhagen ØDenmark

Personalised recommendations