• H. Eugene Stanley
Part of the NATO ASI Series book series (volume 167)


In recent years, a wide range of complex structures of interest to physicists and chemists have been quantitatively characterized using the idea of a fractal dimension d f: an effective dimension that corresponds in a unique fashion to the geometrical shape under study, and often is not an integer.1–7 The key to this progress is the recognition that many random structures obey a symmetry as striking as that obeyed by regular structures. This “scale symmetry” has the implication that objects look the same on many different scales of observation.


Fractal Dimension Convective Roll Growth Probability Diffusion Limited Aggregation Scale Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mandelbrot, B. B., The Fractal Geometry of Nature (W. H. Freeman and Co., San Francisco, 1982), and references therein.Google Scholar
  2. 2.
    Family, F. and Landau, D. P. (eds), Kinetics of Aggregation and Gelation ( Elsevier, Amsterdam, 1984 ).Google Scholar
  3. 3.
    Stanley, H. E., and Ostrowsky, N. (eds) On Growth and Form: Fractal and Non-Fractal Patterns in Physics ( Martinus Nijhoff, The Hague, 1985 ).Google Scholar
  4. 4.
    Boccara, N. and Daoud, M. (eds), Physics of Finely Divided Matter [Proceedings of the Winter School, Les Houches, 1985] (Springer Verlag, Heidelberg, 1985 ).Google Scholar
  5. 5.
    Pynn, R. and Skjeltorp, A. (eds.) Scaling Phenomena in Disordered Systems ( Plenum, N.Y., 1986 ).Google Scholar
  6. 6.
    Pietronero, L. and Tosatti, E. (eds), Fractals in Physics ( North Holland, Amsterdam, 1986 ).Google Scholar
  7. 7.
    Stanley, H. E., Introduction to Fractal Phenomena (in press).Google Scholar
  8. 8.
    Niemeyer, L., Pietronero, L. and Wiesmann, H. J. Phys. Rev. Lett 52, 1033 (1984).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Pietronero, L. and Wiesmann, H. J. Stat. Phys 36, 909 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    Paterson, L., Phys. Rev. Lett 52, 1621 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    Nittmann, J., Daccord, G., and Stanley, H. E., Nature 314, 141 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    Daccord, G., Nittmann, J., and Stanley, H. E., Phys. Rev. Lett 56, 336 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    Van Damme, H., Obrecht, F., Levitz, P., Gatineau, L., and Laroche, C., Nature 320, 731 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    Chen, J. D. and Wilkinson, D., Phys. Rev. Lett 55, 1985 (1985).Google Scholar
  15. 15.
    MA.lOy, K. J., Feder, J., and Jossang, T., Phys. Rev. Lett 55, 2688 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    Stokes, J. P., Weitz, D. A., Gollub, J. P., Dougherty, A., Robbins, M. O., Chaikin, P. M., and Lindsay, H. M., Phys. Rev. Lett 57, 1718 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    Tang, C., Phys. Rev A 31 1977 (1985)Google Scholar
  18. 18.
    Sherwood, J. D. and Nittmann, J, J. Physique 47, 15 (1986).CrossRefGoogle Scholar
  19. 19.
    Buka, A., Kertèsz, J., and Vicsek, T., Nature 323, 424 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    Lenormand, R. and Zarcone, C. Phys. Chem. Hydrodyn 8, 497–506 (1985).Google Scholar
  21. 21.
    Ben-Jacob, E. et al Phys. Rev. Lett 55, 1315–1318 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    DeGregoria, A. J. and Schwartz, L. W. J. Fluid Mech 164, 383–400 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Ben-Jacob, E., Deutscher, G., Garik, P., Goldenfeld, N.D. and Lereah, Y. Phys. Rev. Lett 57, 1903 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    Maher, J. Phys. Rev. Lett 54, 1498 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    Couder, Y., Cardoso,O., Dupuy, D., Tavernier, P. and Thom, W. Europhys. Lett. 2, 437 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    M6.Loy, K. J., Boger, F., Feder, J., Jossang, T., and Meakin, P., Phys. Rev. 35, xxx (1987).Google Scholar
  27. 27.
    Sawada, T. Physica A 140, 134–141 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    Brady, R. M. and Ball, R. C. Nature 309, 225 (1984).ADSCrossRefGoogle Scholar
  29. 29.
    Matsushita, M., Sano, M., Hakayawa, Y., Honjo, H. and Sawada, Y. Phys. Rev. Lett 53, 286 (1984).ADSCrossRefGoogle Scholar
  30. 30.
    Nittmann, J. N., and Stanley, H. E. Nature 321, 663–668 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    Daccord, G. Phys. Rev. Lett. 58, 479–482 (1987)ADSCrossRefGoogle Scholar
  32. Daccord, G. and Lenormand, R. Nature 325, 41–43 (1987).Google Scholar
  33. 32.
    Stapleton, H. J., Allen, J. P., Flynn, C. P., Stinson, D. G. and Kurtz, S. R. Phys. Rev. Lett 45, 1456–1459 (1980).MathSciNetADSCrossRefGoogle Scholar
  34. 33.
    Hellman, J.S., Coniglio, A, and Tsallis,C. Phys. Rev. Lett 53, 1195–1198 (1984).ADSCrossRefGoogle Scholar
  35. 34.
    Herrmann, H.J. Phys. Rev. Lett 56, 2432 (1986).ADSCrossRefGoogle Scholar
  36. 35.
    Schaefer, D. W., Martin, J. E., Wiltzius, P. and Cannell, D. S. Phys. Rev. Lett 52, 2371 (1984).ADSCrossRefGoogle Scholar
  37. 36.
    Mandelbrot, B. B. J. Fluid Mech 62, 331 (1974).ADSMATHCrossRefGoogle Scholar
  38. 37.
    Mandelbrot, B. B. in Proceedings of 13 th IUPAP Conference on Statistical Physics (eds Cabib, E., Kuper, C. G. and Reiss, I.) (Adam Hilger, Bristol, 1978 ).Google Scholar
  39. 38.
    Grassberger, P. Physics Letters A 97, 227 (1983).MathSciNetADSCrossRefGoogle Scholar
  40. 39.
    Hentschel, H. G. E. and Procaccia, I. Physica 8D, 435 (1983).MathSciNetMATHGoogle Scholar
  41. 40.
    Frisch, U. and Parisi, G. in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, Proceedings of the International School of Physics “Enrico Fermi,” Course LXXXVIII (eds Ghil, M., Benzi, R. and Parisi G.) (North-Holland, Amsterdam, 1983 ).Google Scholar
  42. 41.
    Grassberger, P. and Procaccia, I. Physica 13D, 34 (1984); Grassberger, P. Phys. Lett. 107A, 101 (1985) (here the definition of D(q) via “partition functions” was introduced, among other things);Google Scholar
  43. Badii, R. and Politi, A. J. Stat. Phys 40, 725 (1985).Google Scholar
  44. 42.
    Benzi, R., Paladin, G., Parisi, G. and Vulpiani, A. J. Phys. A 17, 3521 (1984); Ibid. 18, 2157 (1985).Google Scholar
  45. 43.
    Meakin, P., Stanley, H. E., Coniglio A. and Witten, T. A. Phys. Rev. A 32, 2364 (1985).ADSCrossRefGoogle Scholar
  46. 44.
    Rammal, R., Tannous, C., Breton, P. and Tremblay, A. M. S. Phys. Rev. Lett 54, 1718 (1985).ADSCrossRefGoogle Scholar
  47. 45.
    Rammal, R., Tannous, C. and Tremblay, A. M. S. Phys. Rev. A 31, 2662 (1985).MathSciNetADSCrossRefGoogle Scholar
  48. 46.
    Rammal, R. J. Phys. (Paris) 46, L129 (1985).MathSciNetGoogle Scholar
  49. 47.
    Rammal, R. Phys. Rev. Lett 55, 1428 (1985).MathSciNetADSCrossRefGoogle Scholar
  50. 48.
    de Arcangelis, L., Redner, S. and Coniglio, A. Phys. Rev. B 31, 4725 (1985).ADSCrossRefGoogle Scholar
  51. 49.
    Coniglio, A. in On Growth and Form: Fractal and Non-Fractal Patterns in Physics (eds Stanley, H. E. and Ostrowsky, N.) (Martinus Nijhoff, Dordrecht, 1985 ), p. 101.Google Scholar
  52. 50.
    Halsey, T. C., Meakin, P. and Procaccia, I. Phys. Rev. Lett 56, 854 (1986).ADSCrossRefGoogle Scholar
  53. 51.
    Meakin, P., Coniglio, A., Stanley, H. E. and Witten, T. A. Phys. Rev. A 34, 3325 (1986).MathSciNetADSCrossRefGoogle Scholar
  54. 52.
    de Arcangelis, L., Redner, S. and Coniglio, A. Phys. Rev. B 34, 4656–4673 (1986).ADSCrossRefGoogle Scholar
  55. 53.
    Coniglio, A., in Fractale in Physics (eds Pietronero, L. and Tosatti, E.) (North Holland, Amsterdam, 1986 ).Google Scholar
  56. 54.
    Meakin, P. Phys. Rev. A 34, 710 (1986).MathSciNetADSCrossRefGoogle Scholar
  57. 55.
    Amitrano, C., Coniglio, A. and di Liberto, F. Phys. Rev. Lett 57, 1016 (1987).ADSCrossRefGoogle Scholar
  58. 56.
    Castellani, C. and Peliti, L. J. Phys. A 19, L429 (1986)CrossRefGoogle Scholar
  59. Ioffe, L. B., Sagdeev, I. R., and Vinokur, V. J. Phys. C 18, L641 (1985).ADSCrossRefGoogle Scholar
  60. 57.
    Meir, Y., Blumenfeld, R., Aharony, A. and Harris, A. B. Phys. Rev. B 34, 3424 (1986);ADSCrossRefGoogle Scholar
  61. Blumenfeld, R., Meir, Y., Harris, A. B. and Aharony, A. J. Phys. A 19, L791 (1986);ADSCrossRefGoogle Scholar
  62. Blumenfeld, R., and Meir, Y., Aharony, A., and Harris, A. B. Phys. Rev. B 35, 3524–3535 (1987);ADSCrossRefGoogle Scholar
  63. Gefen, Y., Shih, W. H., Laibowitz, R. B., and Viggiano, J. M. Phys. Rev. Lett 3097 (1986);Google Scholar
  64. Aharony, A., Phys. Rev. Lett. comments; Y. Park, A. B. Harris, and T. C. Lubensky, Phys. Rev. 35, mac (1986).Google Scholar
  65. 58.
    Ran mal, R. and Tremblay, A.-M. S. Phys.Rev. Lett 58, 415–418 (1987);ADSCrossRefGoogle Scholar
  66. Four-cade, B., Breton, P. and Tremblay, A.-M. S., “On the Infinite Set of Exponents of Fractal Objects” preprint.Google Scholar
  67. 59.
    Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia I. and Shraiman, B. Phys. Rev. A 33 1141 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  68. 60.
    Witten, T. A. and Sander, L. M. Phys. Rev. Lett 47, 1400 (1981).ADSCrossRefGoogle Scholar
  69. 61.
    Witten, T. A. and Sander, L. M. Phys. Rev. B 27, 5686 (1983).MathSciNetADSCrossRefGoogle Scholar
  70. 62.
    Coniglio, A. and Stanley, H. E. Phys. Rev. Lett 52, 1068 (1984).ADSCrossRefGoogle Scholar
  71. 63.
    Leyvraz, F. J. Phys. A 18, L941 (1985).MathSciNetADSCrossRefGoogle Scholar
  72. 64.
    Nittmann, J., Stanley, H. E., Touboul, E. and Daccord, G. Phys. Rev. Lett 58, 619 (1987).ADSCrossRefGoogle Scholar
  73. 65.
    Jensen, M. H., Kadanoff, L. P., Libchaber, A., Procaccia, I. and Stavans, J. Phys. Rev. Lett 55, 2798 (1985).ADSCrossRefGoogle Scholar
  74. 66.
    Katzen, D. and Procaccia, I., preprint.Google Scholar
  75. 67.
    Cates, M. E. and Witten T. A. Phys. Rev. Lett 56, 2497 (1986);ADSCrossRefGoogle Scholar
  76. Cates, M. E. and Witten T. A., Phys. Rev. A. 35, 1809–1824 (1987)MathSciNetADSCrossRefGoogle Scholar
  77. 68.
    Evertsz, C and Lyklema, J.W. Phys. Rev. Lett. 58, 397–400 (1987).ADSCrossRefGoogle Scholar
  78. Lyklema, J.W., Evertsz, C.J.G, and Pietronero, L. Europhys. Lett 2, 77 (1986);ADSCrossRefGoogle Scholar
  79. Lyklema,J.W. and Evertsz, C J. Phys. A 19, L895 (1986); Peliti, L. and Pietronero, L. (preprint).Google Scholar
  80. 69.
    Trus, B., Havlin, S. and Stauffer, D. preprint; see also Roman, E., Bunde, A., and Havlin, S., preprint.Google Scholar
  81. 70.
    Pietronero, L. and Siebesma, A. Phys. Rev. Lett 57, 1098 (1986).ADSCrossRefGoogle Scholar
  82. 71.
    Coniglio, A. Physica A 140, 51–61 (1986).MathSciNetADSCrossRefGoogle Scholar
  83. 72.
    Frisch, U., Sulem, P. and Nelkin, M. J. Fluid Mech 87, 719 (1978).ADSMATHCrossRefGoogle Scholar
  84. 73.
    Meakin, P. Phys. Rev. A 36 , xxx(1987).Google Scholar
  85. 74.
    Meakin, P. J. Phys. A 19, xxx (1987).Google Scholar
  86. 75.
    Lovejoy, S. and Schertzer, D. Meteor. Soc 67, 221 (1986).Google Scholar
  87. 76.
    Schertzer, D. and Lovejoy, S. In IUTAM symposium on turbulence and chaotic phenomena in fluids, Kyoto, Japan, pp. 141–144 (1983).Google Scholar
  88. 77.
    H. Waissmann and S. Havlin, preprintGoogle Scholar
  89. 78.
    P. Meakin, Phys. Rev. B 28, 6718- (1983).ADSCrossRefGoogle Scholar
  90. 79.
    P. Meakin, F. Leyvraz, and H.E. Stanley, Phys. Rev A 31, 1195 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • H. Eugene Stanley
    • 1
  1. 1.Center for Polymer Studies and Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations