Viscous Fingering Instabilities in Porous Media

  • J. P. Stokes
  • D. A. Weitz
  • R. C. Ball
  • A. P. Kushnick
Part of the NATO ASI Series book series (volume 167)


We study patterns formed by the viscous fingering instability in a porous media. When the displacing fluid preferentially wets the medium, the finger width is much larger than the pore size and, when normalized by the square root of the permeability, is found to scale with capillary number as Ca−1/2. While traditional theories based on Hele-Shaw geometry give this dependence for the most unstable wavelength, they are unable to explain the magnitude of the finger. We consider here the effect of a velocity dependent capillary pressure in addition to the more conventional static term, and suggest that it may control the scaling of the finger width on Ca. We demonstrate the existence of this dynamic capillary pressure, which offers new insight into the basic physics of the motion of a fluid interface in porous media.


Porous Medium Interfacial Tension Capillary Pressure Capillary Number Bead Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review, see G.M. Homsy, Ann. Rev. Fluid Mech. 19, 271 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    R.L. Chuoke, P. Van Meurs and C. Van der Poel, Tran. AIME 216 188 (1959).Google Scholar
  3. 3.
    E. Peters and D. Flock, Soc. Pet. Eng. J. 21, 249 (1981).Google Scholar
  4. 4.
    J.P. Stokes, D.A. Weitz, J.P. Gollub, A. Dougherty, M.O. Robbins, P.M. Chaikin and H.M. Lindsay, Phys. Rev. Lett. 57, 1718 (1986).ADSGoogle Scholar
  5. 5.
    P. Tabeling and A. Libchaber, Phys. Rev. A33, 794 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    C.W. Park and G.M. Homsy, J. Fluid Mech., 139, 291 (1984).ADSMATHCrossRefGoogle Scholar
  7. 7.
    L. Patterson, Phys. Rev. Lett. 52, 1621 (1984).CrossRefGoogle Scholar
  8. 8.
    K. Maloy, J. Feder and T. Jossang, Phys. Rev. Lett. 55, 2688 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    R. Lenormand and C. Zarcone, Phys. Rev. Lett. 54, 2226 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    J.D. Chen and D. Wilkinson, Phys. Rev. Lett. 55, 1892 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    D. Wilkinson and J.F. Willemsen, J. Phys. A16, 3365 (1983).MathSciNetADSGoogle Scholar
  12. 12.
    See “Charge Density Waves in Solids,” ed. Gy. Hutiray and J. Solyom, Lecture Notes in Physics Vol 217, (1985).Google Scholar
  13. 13.
    G. Bruinsma and G. Aeppli, Phys. Rev. Lett. 52, 1547 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. P. Stokes
    • 1
  • D. A. Weitz
    • 1
  • R. C. Ball
    • 2
  • A. P. Kushnick
    • 1
  1. 1.Exxon Research and EngAnnandaleUSA
  2. 2.Cavendish LabCambridgeUK

Personalised recommendations