Advertisement

Linear Ruby Scale and One Megabar?

  • A. L. Ruoff

Abstract

This paper is about the ruby R1 fluorescence, its nonlinear pressure dependence at high pressures, and matters related to this, such as Claims of one megabar in opposed anvil diamond devices. Experiments will be described which give Upper bounds on the pressures available using supported uniaxial opposed cemented tungsten carbide anvils and which give Upper bounds on the pressure attainable using opposed diamond anvil devices. Direct static determination of the transition pressures of GaP by two methods will be described; both lead to a pressure of 17 to 18 GPa, substantially le ss than the 22 GPa found on the linear ruby scale. Then an example is given in which the use of shock-based ‘marker materials’ such as silver, when used as the basis of pressure measurement in x-ray diffraction experiments, leads to bulk moduli of cubic carbides (at pressure) which are in extreme disagreement with the expected values. Moreover, use of the marker method has led to indications of pressures of 55 GPa in uniaxial supported opposed anvil devices of 3% cobalt cemented tungsten carbide; however, the attainable pressures in such devices do not exceed about 20 GPa.

Keywords

Bulk Modulus Tungsten Carbide Knoop Hardness Compressive Yield Stress Marker Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Foreman, G. J. Piermarini, J. D. Barnett, and S. Block, Science 176, 284 (1972).CrossRefGoogle Scholar
  2. 2.
    G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Foreman, J. Appl. Phys. 46, 2774 (1975).CrossRefGoogle Scholar
  3. 3.
    J. N. Fritz, S. P. Marsh, W. J. Carter, and R. G. McQueen, Accurate Characterization of the High-Pressure Environment, E. C. Lloyd, ed., National Bureauof Standards Special Publication 326, Washington, D.C. (1971), p. 201.Google Scholar
  4. 4.
    G. J. Piermarini and S. Block, Rev. Sei. Instr. 46, 973 (1975).CrossRefGoogle Scholar
  5. 5.
    P. M. Bell, H. K. Mao, J. Shaner, and D. Steinberg, Proceedings of 6th AIRAPT Intern. High Pressure Conference, Plenum Press, New York (1978).Google Scholar
  6. 6.
    S. A. Raikes and T. J. Ahrens, Proceedings of 6th AIRAPT Intern. High Pressure Conference, Plenum Press, New York (1978).Google Scholar
  7. 7.
    J. C. Haygarth, H. D. Luedemann, I. C. Getting, and G. C. Kennedy, Accurate Characterization, E. C. Lloyd, ed., National Bureau of Standards Special Publication 326, Washington, D.C. (1971), p. 35.Google Scholar
  8. 8.
    R. N. Jeffery, J. D. Barnett, M. R. Vanfleet, and H. T. Hall, J. Appl. Phys. 38, 3172 (1966).CrossRefGoogle Scholar
  9. 9.
    D. L. Decker, W. A. Bassett, L. Merrill, H. T. Hall, and J. D. Barnett, J. Phys. Chem. Data J., 773 (1972).Google Scholar
  10. 10.
    J. F. Cannon, J. Phys. Chem. Ref. Data 3, 781 (1974).CrossRefGoogle Scholar
  11. 11.
    H. G. Drickamer and A. S. Baichan, in Modern Very High Pressure Techniques, R. H. Wentorf, Jr., ed., Butterworth, London (1962).Google Scholar
  12. 12.
    J. Wanagel, V. Arnold, and A. L. Ruoff, J. Appl. Phys. 47, 2821 (1976).CrossRefGoogle Scholar
  13. 13.
    K. F. Forsgren and H. G. Drickamer, Rev. Sei. Instrum. 36, 1709 (1965).CrossRefGoogle Scholar
  14. 14.
    A. L. Ruoff, Proceedings of 6th AIRAPT Intern. High Pressure Conference, Plenum Press, New York (1978).Google Scholar
  15. 15.
    J. P. Day and A. L. Ruoff, J. Appl. Phys. 44, 2447 (1973).CrossRefGoogle Scholar
  16. 16.
    J. C. Haygarth, I. C. Getting, and G. C. Kennedy, J. Appl. Phys. 38, 4557 (1967).CrossRefGoogle Scholar
  17. 17.
    A. L. Ruoff and J. Wanagel, J. Appl. Phys. 46, 4647 (1975).CrossRefGoogle Scholar
  18. 18.
    D. Tabor, The Hardness of Metals, Oxford University Press, Oxford, England (1951).Google Scholar
  19. 19.
    P. Schwarzkopf and R. Kiefer, Cemented Carbides, The Macmillan Company, New York (1960).Google Scholar
  20. 20.
    W. H. Gust, Bull. Amer. Phys. Soc. J9, 5, 660 (1974); also private communication.Google Scholar
  21. 21.
    R. F. Boyd in Modern Very High Pressure Techniques, R. H. Wentorf, Jr., ed., Butterworth, London (1962), p. 157.Google Scholar
  22. 22.
    H. Doi, Y. Fujiwara and K. Miyake, Trans. AIME 245, 1457 (1969).Google Scholar
  23. 23.
    P. S. Brew and B. Crossland, Proceedings of 6th AIRAPT Intern. High Pressure Conference, Plenum Press, New York (1978).Google Scholar
  24. 24.
    R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, London (1950), Chapt. V.Google Scholar
  25. 25.
    A. L. Ruoff and J. Wanagel, Rev. Sei. Instr. 46, 1294 (1975).CrossRefGoogle Scholar
  26. 26.
    E. A. Perez-Albuerne, K. F. Forsgren, and H. G. Drickamer, Rev. Sei. Instr. 35, 29 (1964), see Figure 4.Google Scholar
  27. 27.
    W. H. Gust and E. B. Royce, J. Appl. Phys. 42, 276 (1971).CrossRefGoogle Scholar
  28. 28.
    S. Minomura and H. G. Drickamer, J. Phys. Chem. Solids 23, 451 (1962).CrossRefGoogle Scholar
  29. 29.
    A. R. Champion and H. G. Drickamer, J. Phys. Chem. Solids 26, 1973 (1965).Google Scholar
  30. 30.
    H. L. Brown, P. E. Armstrong, and C. P. Kempter, J. Chem. Phys. 45, 547 (1966).CrossRefGoogle Scholar
  31. 31.
    J. J. Gilman and B. W. Roberts, J. Appl. Phys. 32, 1405 (1961).CrossRefGoogle Scholar
  32. 32.
    H. L. Brown and C. P. Kempter, Phys. Stat. Solidi 18, K21 (1966).CrossRefGoogle Scholar
  33. 33.
    A. L. Ruoff and L. C. Chhabildas, Proceedings of 6th AIRAPT Intern. High Pressure Conference, Plenum Press, New York (1978).Google Scholar
  34. 34.
    H. J. McSkimin and P. Andreatch, Jr., J. Appl. Phys. 34, 651 (1963).CrossRefGoogle Scholar
  35. 35.
    H. J. McSkimin and P. Andreatch, Jr., J. Appl. Phys. 35, 2161 (1964).CrossRefGoogle Scholar
  36. 36.
    H. J. McSkimin and P. Andreatch, Jr., J. Appl. Phys. 43, 2944 (1972).CrossRefGoogle Scholar
  37. 37.
    K. W. Katahara, M. H. Manghnani, and E. S. Fisher, J. Appl. Phys. 47, 434 (1976).CrossRefGoogle Scholar
  38. 38.
    E. S. Fisher and M. H. Manghnani, J. Phys. and Chem. Solids 32, 657 (1971).CrossRefGoogle Scholar
  39. 39.
    E. S. Fisher, M. H. Manghnani, and T. J. Sokolowski, J. Appl. Phys. 41, 2991 (1970).CrossRefGoogle Scholar
  40. 40.
    D. R. Wilburn and W. A. Bassett, High Temperatures-High Pressures 8, 343 (1976).Google Scholar
  41. 41.
    A. L. Ruoff and L. C. Chhabildas, J. Appl. Phys. 47, 4867 (1976).CrossRefGoogle Scholar
  42. 42.
    H. K. Mao and P. M. Bell, Science 191, 851 (1976).CrossRefGoogle Scholar
  43. 43.
    E. Feher and M. Sturge, Phys. Rev. 172, 244 (1968).CrossRefGoogle Scholar
  44. 44.
    D. A. Nelson, private communication.Google Scholar
  45. 45.
    R. E. Bolz and G. L. Tuve, eds., Handbook of Tables for Applied Engineering Science, the Chemical Rubber Co., Cleveland (1970).Google Scholar
  46. 46.
    S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill Book Co., New York (1970), p. 408.MATHGoogle Scholar
  47. 47.
    G. Piermarini, S. Block, and J. D. Barnett, J. Appl. Phys. 44, 537 (1973), see Fig. 2.Google Scholar
  48. 48.
    J. A. VanVechten, Phys. Rev. B 7, 1479 (1973).Google Scholar
  49. 49.
    S. Block and G. Piermarini, Physics Today (September 1976), p. 51.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • A. L. Ruoff
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations