Pressure Effect on the Mechanism of the Thermal (2+2) Cycloaddition Process

  • J. Osugi
  • M. Sasaki
  • H. Tsuzuki
  • Y. Uosaki
  • M. Nakahara


To explain the mechanisms of chemical reactions, it is very important to have information on the intermediates of these reactions. The thermal (2+2) cycloaddition in one step is forbidden by Woodward and Hoffmann’s rule [1]. In other words, the orbital symmetry rule predicts that zwitterion or biradical intermediates may exist in thermal (2+2) cycloadditions. The zwitterionic intermediate or transition State was suggested first by Williams et al. [2] who found that the strong electron acceptor, tetracyanoethylene (TCNE) cycloadded to electron-rich olefins like methyl vinyl ether or p-methoxystyrene under mild conditions. This suggestion was based on the qualitative experimental results that these reactions were markedly accelerated by the polar solvents and the electron donating groups attached, directly or through the benzene ring, to the double bond of the nucleophilic olefins. The mechanism of the thermal cycloadditions by way of the zwitterionic intermediate was reviewed in detail by Gompper [3] and Bartlett [4]. The stepwise mechanism was confirmed by the high but not complete stereospecificity [4], and by the trapping reaction with methanol [5]. The large pressure effect on the cycloaddition of this type also was interpreted as strong evidence for the zwitterion formation [6].


Maleic Anhydride Lower Wave Number Zwitterion Formation Enol Ether Stepwise Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Woodward and R. Hoffmann, J. Am. Chem. Soc. 87, 395, 2046, 2511, 4388, 4389 (1965);CrossRefGoogle Scholar
  2. R. B. Woodward and R. Hoffmann, Angew. Chem. Int. Ed. Engl. 8, 781 (1969).CrossRefGoogle Scholar
  3. 2.
    J. K. Williams, D. W. Wiley, and B. C. McKusick, J. Am. Chem. Soc. 84, 2210 (1962).CrossRefGoogle Scholar
  4. 3.
    R. Gompper, Angew. Chem. Int. Ed. Engl. 8, 312 (1969).CrossRefGoogle Scholar
  5. 4.
    P. D. Bartlett, Quart. Rev. 24, 473 (1970).CrossRefGoogle Scholar
  6. 5.
    R. Huisgen, R. Schug, and G. Steiner, Angew. Chem. Int. Ed. Engl. 13, 80 (1974).CrossRefGoogle Scholar
  7. 6.
    F. K. Fleischmann and H. Keim, Tetrahedron Lett. 39, 3773 (1973);CrossRefGoogle Scholar
  8. G. Swieton, J. V. Jounne, and H. Keim, in Proceedings 4th Intern. Conference High Pressure, Kyoto, Japan (1974), p. 652.Google Scholar
  9. 7.
    M. Nakahara, Y. Tsuda, M. Sasaki, and J. Osugi, Chem. Lett. 731 (1976).Google Scholar
  10. 8.
    M. Nakahara, Y. Uosaki, M. Sasaki, and J. Osugi, Chem. Lett. to be published.Google Scholar
  11. 9.
    M. Nakahara, Y. Uosaki, M. Sasaki, and J. Osugi, Chem. Lett. to be published.Google Scholar
  12. 10.
    M. Sasaki, M. Okamoto, H. Tsuzuki, and J. Osugi, Chem. Lett. 1289 (1976).Google Scholar
  13. 11.
    A. R. Cooper, C. W. P. Crowne, and P. G. Farrell, Trans. Faraday Soc. 62, 18 (1966).CrossRefGoogle Scholar
  14. 12.
    T. Arimoto and J. Osugi, Rev. Phys. Chem. Jpn. 44, 25 (1974).Google Scholar
  15. 13.
    B. Tonchéva, R. Vélichkova, and I. P. Panayotov, Bull. Soc. Chim. Fr., 1033 (1974).Google Scholar
  16. 14.
    K. Hayashi, P. A. Marchese, S. Munari, and S. Russo, Chim. Ind. (Milan) 56, 187 (1974).Google Scholar
  17. 15.
    D. A. Long and W. O. George, Spectrochim. Acta 19, 1717 (1963).CrossRefGoogle Scholar
  18. 16.
    C.W. Young, R. B. DuVall, and N. Wright, Anal. Chem. 23, 709 (1951).CrossRefGoogle Scholar
  19. 17.
    L. F. Fieser, M. Fieser, and S. Kajagopalan, J. Org. Chem. 13, 800 (1948).CrossRefGoogle Scholar
  20. 18.
    G. Steiner and R. Huisgen, Tetrahedron Lett., 3769 (1973).Google Scholar
  21. 19.
    N. S. Isaacs and E. Rannala, J.C.S. Perkin II, 1555 (1975).Google Scholar
  22. 20.
    W. J. le Noble and R. Mukhtar, J. Am. Chem. Soc. 97, 5938 (1975).CrossRefGoogle Scholar
  23. 21.
    C. A. Eckert, Ann. Rev. Phys. Chem. 23, 239 (1972).CrossRefGoogle Scholar
  24. 22.
    R. A. Grieger and C. A. Eckert, J. Am. Chem. Soc. 92, 2918, 7149 (1970).Google Scholar
  25. 23.
    K. Seguchi, A. Sera, and K. Maruyama, Tetrahedron Lett., 1585 (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • J. Osugi
    • 1
  • M. Sasaki
    • 1
  • H. Tsuzuki
    • 1
  • Y. Uosaki
    • 1
  • M. Nakahara
    • 1
  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations