Advertisement

High Pressure Chemical Kinetics: Phenomena in Fluids at High Pressures and Temperatures

  • E. U. Franck

Abstract

A great majority of the chemical reactions at high pressures that have been studied or technically used are for obvious reasons reactions in liquids. This means that the applied pressures do not often extend beyond 10 kbar or 1 GPa, which is a moderate pressure ränge by present Standards. Pressures of this magnitude will in most cases only increase the density of the liquid. Deformation of molecules often needs pressures between 10 and 100 kbar, and substantial changes of electronic structure may require pressures above 100 kbar.

Keywords

Moderate Pressure Critical Curve Static Dielectric Constant Critical Curf Vapor Pressure Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schmidt, “Properties of Water and Steam in SI-Units,” Springer, Heidelberg, Germany (1969).Google Scholar
  2. 2.
    K. Tödheide, in Water, F. Franks, ed., Plenum Press, New York (1972).Google Scholar
  3. 3.
    S. Maier and E. U. Franck, Ber. Bunsenges. phys. Chemie, 70, 639 (1966).Google Scholar
  4. 4.
    H. Köster and E. U. Franck, Ber. Bunsenges. phys. Chemie, 73, 716 (1969).Google Scholar
  5. 5.
    R. Hilbert, Ph.D. Thesis, University of Karlsruhe, Karlsruhe, Germany (1977).Google Scholar
  6. 6.
    C. W. Burnham, J. R. Holloway, and N. F. Davis, Am. J. Sei. 267A, 70 (1969).Google Scholar
  7. 7.
    J. M. Walsh and M. H. Rice, J. Chem. Phys. 26, 815 (1957).CrossRefGoogle Scholar
  8. 8.
    A. C. Mitchell and W. J. Nellis, in Proceedings 6th AIRAPT Intern. Conference on High Pressures, Plenum Press, New York (1978).Google Scholar
  9. 9.
    H. C. Helgeson and D. H. Kirkham, Am. J. Science 276, 97 (1976); also 1977 in press.Google Scholar
  10. 10.
    R. W. Potter II and D. L. Brown, Geological Survey Bulletin 1421-C, U.S. Government Printing Office, Washington, D.C. (1977)Google Scholar
  11. 11.
    H. L. Barnes, ed. Geochemistry of Hydrothermal Ore Deposits, Holt, Rinehart and Winston, New York (1967).Google Scholar
  12. 12.
    R. Hilbert, Ph.D. Thesis, University of Karlsruhe, Karlsruhe, Germany (1977).Google Scholar
  13. 13.
    V. N. Zubarov, P. B. Pruzakow, and L. W. Zergejewa, in Standard-Values, Moscow, U.S.S.R. (1973).Google Scholar
  14. 14.
    R. Taáni, Ph.D. Thesis, University of Karlsruhe, Karlsruhe, Germany (1976).Google Scholar
  15. 15.
    J. S. Rowlinson, Liquids and Liquid Mixtures, 2nd ed., Butterworths, London (1969).Google Scholar
  16. 16.
    Z. Alwani and G. M. Schneider, Ber. Bunsenges. phys. Chemie, 71, 633 (1967);Google Scholar
  17. G. M. Schneider, in Topics in Current Chemistry, Springer, Heidelberg, Germany (1970).Google Scholar
  18. 17.
    K. Tödheide and E. U. Franck, Z. physik. Chem. (Frankfurt) 37, 387 (1968).Google Scholar
  19. 18.
    H. Lentz, private communication.Google Scholar
  20. 19.
    M. Gehrig, Ph.D. Thesis, University of Karlsruhe, Karlsruhe, Germany (1975).Google Scholar
  21. 20.
    R. L. Scott and P. H. van Konynenburg, Discuss. Far. Soc. 49, 87 (1970);CrossRefGoogle Scholar
  22. R. L. Scott, Ber. Bunsenges. phys. Chem. 76, 296 (1972).Google Scholar
  23. 21.
    C. H. Twu, K. E. Gubbins, and C. G. Gray, J. Chem. Phys. 64, 5186 (1976);CrossRefGoogle Scholar
  24. K. E. Gubbins and C. H. Twu, Chem. Eng. Sei., in press.Google Scholar
  25. 22.
    R. A. H. Kruse, Ph.D. Thesis, University of Karlsruhe, Karlsruhe, Germany (1975).Google Scholar
  26. 23.
    K. R. Schulz, Ph.D. Thesis, University of Karlsruhe, Karlsruhe, Germany (1974).Google Scholar
  27. 24.
    M. Buback and F. W. Nees, Ber. Bunsenges. phys. Chem. 80, 650 (1976).CrossRefGoogle Scholar
  28. 25.
    F. W. Nees and M. Buback, Ber. Bunsenges. phys. Chem. 80, 1017 (1976).CrossRefGoogle Scholar
  29. 26.
    M. Uematsu and E. U. Franck, J. Chem. Eng. Data, in press.Google Scholar
  30. 27.
    K. Reuter, Ph.D. Thesis, University of Karlsruhe, Karlsruhe, Germany (1974).Google Scholar
  31. 28.
    V. M. Jansoone and E. U. Franck, Ber. Bunsenges. phys. Chem. 76, 943 (1972);Google Scholar
  32. V. M. Jansoone, Acta Physica Austriaca 37, 326 (1973).Google Scholar
  33. 29.
    M. S. Wertheim, J. Chem. Phys. 55, 429 (1971).Google Scholar
  34. 30.
    K. Tödheide, in Molten Salts, U.S. Electrochemical Soc. (1976).Google Scholar
  35. 31.
    G. Treiber and K. Tödheide, Ber. Bunsenges. phys. Chem. 77, 540 (1973).Google Scholar
  36. 32.
    M. Buback and E. U. Franck, Ber. Bunsenges. phys. Chem. 76, 350 (1972).Google Scholar
  37. 33.
    H. Buback and E. U. Franck, Ber. Bunsenges. phys. Chem. 27, 1074 (1973).Google Scholar
  38. 34.
    F. Hensel and E. U. Franck, Ber. Bunsenges. phys. Chem. 70, 1154 (1966);Google Scholar
  39. F. Hensel and E. U. Franck, Rev. Mod. Phys. 40, 697 (1968);CrossRefGoogle Scholar
  40. F. Hensel and E. U. Franck, in Experimental Thermodynamics, Vol. II. B. Le Neindre and B. Vodar, editors, Pure and Applied Chemistry, Butterworths, London (1975).Google Scholar
  41. 35.
    F. Hensel, Angewandte Chemie 86, 459 (1974).CrossRefGoogle Scholar
  42. 36.
    J. K. Kokoin and A. R. Sechenko, Phys. Metals and Metallography 24, 74 (1967).Google Scholar
  43. 37.
    H. v. Tippeiskirch, E. U. Franck, F. Hensel, and J. Kestin, Ber. Bunsenges. phys. Chem. 79, 889 (1975).CrossRefGoogle Scholar
  44. 38.
    H. v. Tippeiskirch, Ber. Bunsenges. phys. Chem. 80, 727 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • E. U. Franck
    • 1
  1. 1.Institut für Physikalische ChemieUniversity of KarlsruheKarlsruheW. Germany

Personalised recommendations