Fluid Chromatography of Oligomers

  • W. Hartmann
  • E. Klesper


Gas chromatography at normal pressures is not used in the Separation of oligomers and polymers because large molecules do not possess sufficient vapor pressure. However, gas phases above their critical temperatures and at pressures from 20 to 200 bar, or higher, may possess the ability to dissolve large molecules. This property has long been known [1–2] and extends to many classes of Compounds, including inorganic salts. The dissolution ability is particularly pronounced with low-boiling solvents whose critical temperatures are low enough to ensure stability of the substrate, but at the same time high enough to indicate the possibility for sufficiently strong intermolecular forces between the supercritical solvent and the substrate molecules. When the density of the supercritical phase is high enough for sufficient solubility power, this density may still be considerably smaller than the density of the corresponding liquid just below the critical temperature.


Feed Rate Critical Temperature Supercritical Fluid Chromatography Column Dimension Oligomeric Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. B. Hannay and J. Hogarth, Proc. Roy. Soc. London 29, 324 (1879).CrossRefGoogle Scholar
  2. 2.
    M. Zentnerszwer, Z. Physik. Chem. 46, 427 (1903).Google Scholar
  3. 3.
    T. H. Gouw and R. E. Jentoft, J. Chromatog. 6, 303 (1972).CrossRefGoogle Scholar
  4. 4.
    T. H. Gouw and R. E. Jentoft, Adv. in Chromatog. 13, 1 (1975).Google Scholar
  5. 5.
    M. N. Myers and J. C. Giddings, in Progress in Separation and Purification, Vol. 3, S. Perry, C. J. van Oss, eds., Wiley- Interscience, New York (1970), p. 133.Google Scholar
  6. 6.
    E. Klesper, A. H. Corwin, and D. A. Turner, J. Org. Chem. 27, 700 (1962).CrossRefGoogle Scholar
  7. 7.
    N. M. Karayannis and A. H. Corwin, Anal. Biochem. 26, 34 (1968).Google Scholar
  8. 8.
    S. T. Sie and G.W.A. Rijnders, Anal. Chim. Acta 31 (1967).Google Scholar
  9. 9.
    S.. T. Sie and G.W.A. Rijnders, Separation Sei. 2, 755 (1967).CrossRefGoogle Scholar
  10. 10.
    R. E. Jentoft and T. H. Gouw, Anal. Chem. 44, 681 (1972).CrossRefGoogle Scholar
  11. 11.
    J. A. Niemann and L. B. Rogers, Separation Sei. 10, 517 (1975).CrossRefGoogle Scholar
  12. 12.
    R. E. Jentoft and T. H. Gouw, J. Polymer Sei., Polym. Lett. 7, 811 (1969).Google Scholar
  13. 13.
    E. Klesper and W. Hartmann, J. Polymer Sei., Polym. Lett. 15, 9 (1977).CrossRefGoogle Scholar
  14. 14.
    S. T. Sie and G.W.A. Rijnders, Separation Sei. 2, 729 (1967).CrossRefGoogle Scholar
  15. 15.
    D. Bartmann, Ph.D. Dissertation, Ruhr Universität Bochum, Bochum, Germany (1972).Google Scholar
  16. 16.
    G. M. Schneider, Topics in Current Chem. 13, 559 (1970).Google Scholar
  17. 17.
    N. M. Karayannis, A. H. Corwin, E. W. Baker, E. Klesper, and J. A. Walter, Anal. Chem. 40, 1736 (1968).CrossRefGoogle Scholar
  18. 18.
    M. N. Myers and J. C. Giddings, Separation Sei. 1, 761 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • W. Hartmann
    • 1
  • E. Klesper
    • 1
  1. 1.Universität FreiburgFreiburgW. Germany

Personalised recommendations