Some Physicochemical Properties of Water and Aqueous Solutions under High Pressure — Hydrophobic Hydration

  • K. Suzuki
  • Y. Taniguchi
  • M. Tsuchiya


It is well recognized from the analysis of x-ray diffraction that liquid water at atmospheric pressure retains the four-coordinated open structure of ice-I. On the other hand, the critical pressure for the presence of ice-I is well known to be about 2 kbars in the phase diagram of water. These two facts suggest the possibility that compressed liquid water might retain the structure of dense ice of the corresponding high-pressure phase, and that the physicochemical properties of liquid water are changed dramatically above about 2 kbars.


Critical Micelle Concentration Liquid Water Partial Molar Volume Solute Molecule Amphiphilic Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Linowski, Nan-I Liu, and J. Jonas, J. Chem. Phys. 65, 3383 (1976).CrossRefGoogle Scholar
  2. 2.
    T. DeFries and J. Jonas, J. Phys. Chem. 65, 896 (1977).CrossRefGoogle Scholar
  3. 3.
    Y. Lee and J. Jonas, J. Chem. Phys. 57, 4233 (1972).CrossRefGoogle Scholar
  4. 4.
    D. J. Wibur, T. DeFries, and J. Jonas, J. Chem. Phys. 65, 1783 (1976).CrossRefGoogle Scholar
  5. 5.
    C. Konda and T. Yamamoto, Chem. Phys. Letters, in press.Google Scholar
  6. 6.
    R. S. Bradley, M. Dew, and D. C. Munro, High Temp.-High Press. 5, 169 (1973).Google Scholar
  7. 7.
    A. M. Zipp, Ph.D. Dissertation, Princeton University, Princeton, New Jersey (1973).Google Scholar
  8. 8.
    H. Kliman, Ph.D. Dissertation, Princeton University, Princeton, New Jersey (1969).Google Scholar
  9. 9.
    C. Tanford, The Hydrophobic Effect, John Wiley & Sons, New York (1973).Google Scholar
  10. 10.
    G. E. Walrafen, J. Solution Chemistry 2, 159 (1973).CrossRefGoogle Scholar
  11. 11.
    E. U. Franck and K. Roth, Disc. Faraday Soc. 29, 108 (1967).CrossRefGoogle Scholar
  12. 12.
    O. D. Bonner and G. B. Woolsey, J. Phys. Chem. 72, 899 (1968).Google Scholar
  13. 13.
    K. Suzuki and M. Tsuchiya, Bull. Chem. Soc. Japan 48, 1701 (1975).CrossRefGoogle Scholar
  14. 14.
    S. D. Hamann, J. Phys. Chem. 66, 1359 (1962).CrossRefGoogle Scholar
  15. 15.
    S. Rodriguez and H. Offen, J. Phys. Chem. 47 (1977).Google Scholar
  16. 16.
    T. Sugano and K. Suzuki, “Influence of Pressure on the CMC of Nonionic Surfactant,” to be published.Google Scholar
  17. 17.
    M. Tanaka, S. Kaneshina, and R. Matuura, Memoirs Faculty of Science (Fukuoka University) 4, 131 (1974).Google Scholar
  18. 18.
    J. Hirschfelder, D. Stevenson, and H. Eyring, J. Chem. Phys. 896 (1937).Google Scholar
  19. 19.
    B. Brun, R. Ganfres, J. Rouviere, and J. Salivinien, C. R. Acad. Sei. Paris 260, 3636 (1965).Google Scholar
  20. 20.
    J. L. Coop and D. H. Everett, Disc. Faraday Soc. 15, 174 (1953).CrossRefGoogle Scholar
  21. 21.
    G. M. Schneider, Water, F. Franks, ed., Vol. 2, Plenum Press, New York (1973), p. 381.Google Scholar
  22. 22.
    K. Suzuki and M. Tsuchiya, Bull. Inst. Chem. Res. (Kyoto University) 47, 270 (1969).Google Scholar
  23. 23.
    K. Suzuki, Y. Taniguchi, and T. Watanabe, J. Phys. Chem. 77, 1918 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • K. Suzuki
    • 1
  • Y. Taniguchi
    • 1
  • M. Tsuchiya
    • 2
  1. 1.Ritsumeikan UniversityKyotoJapan
  2. 2.The College of Naval Architecture of NagasakiNagasakiJapan

Personalised recommendations