Pressure-Strain Relationships in the Crystal Lattice of Polymers


Polymer crystals consist of chain molecules. They are characterized, with regard to the cohesive forces, by the covalent bonds in the fiber-axis direction and the weak intermolecular secondary forces in the transverse directions. All physical properties of polymer crystals are affected by this important feature and are thus highly anisotropic, a fact which will be manifest in a most straightforward way in the study of compression of the crystal under hydrostatic high pressure. In support of this, Müller [1] was the first to find that the hydrocarbon crystals are only l/10th to l/40th as compressible in the fiber-axis direction as they are in the directions perpendicular to it.


Ethylene Oxide Volumetric Strain Hydrostatic High Pressure Maraging Steel Chain Molecule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Müller, Proc. Roy. Soc. A178, 227 (1941).Google Scholar
  2. 2.
    H. Tadokoro, Structure of Polymers (in Japanese), Kagaku Doujin Press, Kyoto, Japan (1976).Google Scholar
  3. 3.
    S. S. Kabalkina and L. F. Vereshchagin, Dokl. Akad. Nauk. SSSR 143, 818 (1962).Google Scholar
  4. 4.
    T. Ito and H. Marui, Polymer J. 2, 768 (1971).CrossRefGoogle Scholar
  5. 5.
    T. Ito, Rev. Sei. Instr. 45, 1560 (1974).CrossRefGoogle Scholar
  6. 6.
    K. Yasunami, Nippon Kikai-gakkaishi 67, 980 (1964).Google Scholar
  7. 7.
    K. Yasunami, Metrologia k, 168 (1968).Google Scholar
  8. 8.
    H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures, John Wiley and Sons, New York (1954), p. 322.MATHGoogle Scholar
  9. 9.
    P. R. Swan, J. Polymer Sei. 56, 403 (1962).CrossRefGoogle Scholar
  10. 10.
    M. Hikosaka, T. Seto, and S. Minomura, Polymer Preprints, Japan 26 (2), 421 (1977).Google Scholar
  11. 11.
    D. J. Pastine, J. Chem. Phys. 49, 3012 (1968).CrossRefGoogle Scholar
  12. 12.
    G. Natta and P. Corradini, Nuovo Cimento, Suppl. 15, 9 (1960).Google Scholar
  13. 13.
    L. R. G. Treloar, Polymer 1, 95, 279, 290 (1960); also T. Shimanouchi, M. Asahina, and S. Enomoto, J. Polymer Sei. 59, 93 (1962); M. Asahina and S. Enomoto, J. Polymer Sei. 5, 101 (1962); S. Enomoto and M. Asahina, J. Polymer Sei. 59, 113 (1962).Google Scholar
  14. 14.
    I. Sakurada, T. Ito, and K. Nakamae, J. Polymer Sei. C15, 75 (1966); also I. Sakurada and K. Kaji, J. Polymer Sei. C31, 57 (1970).Google Scholar
  15. 15.
    R. F. S. Hearmon, An Introduction to Applied Anisotropic Elasticity, Oxford University Press, London (1961).Google Scholar
  16. 16.
    H. Miyaji, J. Phys. Soc. Japan 39, 1346 (1975).CrossRefGoogle Scholar
  17. 17.
    I. Sakurada, K. Nakamae, K. Kaji, and S. Wadano, Kobunshi Kagaku 26, 561 (1969).CrossRefGoogle Scholar
  18. 18.
    H. Arimoto, M. Ishibashi, M. Hirai, and Y. Chatani, J. Polymer Sei., Part A, 3, 317 (1965).Google Scholar
  19. 19.
    C. Nakafuku and T. Takemura, Japan. J. Appl. Phys. 14, 599 (1975).CrossRefGoogle Scholar
  20. 20.
    Y. Takahashi and H. Tadokoro, Macromolecules 672 (1973).Google Scholar
  21. 21.
    B. Wunderlich, Macromolecular Physics, Vol. 1, Academic Press, New York (1973).Google Scholar
  22. 22.
    R. Hosemann, Polymer 349 (1962); also Polymer 4, 199 (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • T. Ito
    • 1
  1. 1.Kyoto Institute of TechnologyMatsugasaki, KyotoJapan

Personalised recommendations