Raman Study of the Conformational Characteristics of Chain Molecules under High Pressure

  • P. E. Schoen
  • R. Priest
  • J. P. Sheridan
  • J. M. Schnur


As part of a continuing program to study the properties of lubricants and polymers, we have undertaken an investigation of the conformational properties of linear alkanes and polymers as functions of temperature and pressure. We have successfully obtained the Raman spectra of these materials over a range of 1 to 20 kbar from a gasketed diamond-anvil cell while calibrating the pressure with the ruby fluorescence technique [1]. The conformation of heptane (C7H34) and hexadecane (C16H34) have been monitored by the Observation of conformationally sensitive Raman bands. Our data indicate that heptane becomes more “kinked” (more gauche bonds) as a function of pressure. This result was surprising to us at first, since at sufficiently high pressure heptane freezes in the unkinked, all-trans conformation. We have developed a theory, based on excluded volume considerations, which is consistent with these observations.


Chain Molecule Linear Alkane Conformational Characteristic Gauche Conformation Room Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Barnett, S. Block, and G. J. Piermarini, Rev. Sei. Instr. 44, 1 (1973).CrossRefGoogle Scholar
  2. 2.
    D. M. Adams, S. J. Payne, and K. Martin, App. Spectros. 27, 377 (1973).CrossRefGoogle Scholar
  3. 3.
    P. E. Schoen, J. M. Schnur, and J. P. Sheridan, J. Appl. Spectros., aeeepted for publication.Google Scholar
  4. 4.
    R. G. Snyder and J. H. Schachtschneider, Spectrochim. Acta 19, 85 (1963);CrossRefGoogle Scholar
  5. also M. Tasumi, T. Shimanouchi, and T. Miyazawa, J. Mol. Spect. 9, 269 (1962);CrossRefGoogle Scholar
  6. R. G. Snyder, J. Chem. Phys. 47, 1316 (1967).CrossRefGoogle Scholar
  7. 5.
    W. L. Peticolas, G. W. Hibler, J. L. Lippert, A. Peterlin, and H. Olf, App. Phys. Lett. 18, 87 (1971);CrossRefGoogle Scholar
  8. also R. F. Schaufele and T. Shimanouchi, J. Chem. Phys, 47, 3605 (1967).CrossRefGoogle Scholar
  9. 6.
    R,. F. Schaufele, J. Chem. Phys. 49, 4168 (1968).Google Scholar
  10. 7.
    M.- Tasumi and T. Shimanouchi, J. Mol. Spectros. 9, 261 (1962).CrossRefGoogle Scholar
  11. 8.
    J. P. Sheridan, J. M. Schnur, and P. E. Schoen, in preparation.Google Scholar
  12. 9.
    R. Faiman and K. Larsson, J. Raman Spectros. 4, 387 (1976);CrossRefGoogle Scholar
  13. also B. P. Gaber and W. L. Peticolas, Biochim. Biophys. Acta 465, 260 (1977).CrossRefGoogle Scholar
  14. 10.
    R. Alben, Mol. Cryst. Liq. Cryst. 13, 193 (1971).CrossRefGoogle Scholar
  15. 11.
    B. Wunderlich and T. Arakawa, J. Polymer Sei. A2, 3697 (1964);Google Scholar
  16. also D. C. Bassett, Polymer 17, 460 (1976).CrossRefGoogle Scholar
  17. 12.
    K. Monobe, Y. Fujiwara, and K. Tanaka in Proceedings of 4th Intern. High Pressure Conference, J. Osugi, ed., Kyoto, Japan (1975), p. 63, 865.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • P. E. Schoen
    • 1
  • R. Priest
    • 1
  • J. P. Sheridan
    • 1
  • J. M. Schnur
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations