Double Light Scattering — Application to the Determination of the Isothermal Compressibility of Pure Fluids Near Their Critical Point

  • Y. Garrabos
  • R. Tufeu
  • B. Le Neindre
  • B. Oksengorn


The behavior of the isothermal compressibility of pure fluids in the critical region is of special interest because this parameter is related to several important physical properties of fluids in the vicinity of the gas-liquid transition. The determination of the isothermal compressibility can be made from the analysis of classical measurements of thermodynamics (P V T data) in a ränge of temperatures not too close to the critical point. Another way is to use optical methods like the interferometric measurements to determine the density profile, the determination of the turbidity (apparent absorption of the incident light beam), or the intensity of the polarized component of the light scattering which is directly related to the isothermal compressibility according to the Einstein-Smoluchowski relation. In the last case it is very difficult to obtain an accurate measurement of the absolute value of the light intensities, with important geometry corrections.


Density Profile Isothermal Compressibility Pure Fluid Interferometric Measurement Depolarization Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Reith and H. L. Swinney, Phys. Rev. A 12, 1094 (1975).CrossRefGoogle Scholar
  2. 2.
    W. M. Gelbart, Adv. Chem. Phys. 26, 1 (1974).Google Scholar
  3. 3.
    D. W. Oxtoby and W. M. Gelbart, J. Chem. Phys. 60, 3359 (1974).CrossRefGoogle Scholar
  4. 4.
    A. J. Bray and R. F. Chang, Phys. Rev. A 12, 2594 (1975).CrossRefGoogle Scholar
  5. 5.
    H. M. J. Boots, D. Bedeaux, and P. Mazur, Physica 84A, 217 (1976).CrossRefGoogle Scholar
  6. 6.
    Y. Garrabos, R. Tufeu, and B. Le Neindre, to be published.Google Scholar
  7. 7.
    Y. Garrabos, R. Tufeu, and B. Le Neindre, C.R. Acad. Sei. 282B, 313 (1976).CrossRefGoogle Scholar
  8. 8.
    N. J. Trappeniers, A. C. Michels, and R. H. Huijser, Chem. Phys. Lett. 34, 192 (1975).CrossRefGoogle Scholar
  9. 9.
    D. Beysens, A. Bourgou, and G. Zalczer, J. de Physique, C1 221 (1976).Google Scholar
  10. 10.
    J. W. Smith, M. Giglio, and G. B. Benedek, Phys. Rev. Lett. 27, 1556 (1971).CrossRefGoogle Scholar
  11. 11.
    V. G. Publielli and N. C. Ford, Jr., Phys. Rev. Lett. 25, 143 (1976).CrossRefGoogle Scholar
  12. 12.
    Y. Rocard, Annales de Physique 10, 116 (1928).Google Scholar
  13. 13.
    W. T. Estler, R. Hocken, T. Charlton, and L. R. Wilcox, Phys. Rev. A, 12, 2118 (1975).CrossRefGoogle Scholar
  14. 14.
    M. Vincentini-Missoni, J. M. H. Levelt-Sengers, and M. S. Green, Phys. Rev. Lett. 22, 389 (1969).CrossRefGoogle Scholar
  15. 15.
    W. L. Greer, J. M. H. Levelt-Sengers, and J. V. Sengers, J. Phys. Chem. Ref. Data 5, 1 (1976).Google Scholar
  16. 16.
    J. M. H. Levelt-Sengers and J. V. Sengers, Phys. Rev. A. 12, 2622 (1975).CrossRefGoogle Scholar
  17. 17.
    J. H. Lunacek and D. S. Cannel, Phys. Rev. Lett. 27, 841 (1971).Google Scholar
  18. 18.
    J. A. White and B. S. Maccabee, Phys. Rev. Lett. 26, 1468 (1971).CrossRefGoogle Scholar
  19. 19.
    R. Hocken and M. R. Moldover, Phys. Rev. Lett. 37, 29 (1976).Google Scholar
  20. 20.
    D. S. Cannel, Phys. Rev. A 12, 225 (1975).CrossRefGoogle Scholar
  21. 21.
    G. T. Feke, G. A. Hawkins, J. B. Lastovka, and G. B. Benedek, Phys. Rev. Lett. 27, 1780 (1971).CrossRefGoogle Scholar
  22. 22.
    D. A. Baizarini, Can. J. Phys. 50, 2194 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Y. Garrabos
    • 1
  • R. Tufeu
    • 1
  • B. Le Neindre
    • 1
  • B. Oksengorn
    • 1
  1. 1.Université Paris-NordVilletaneuseFrance

Personalised recommendations