Skip to main content

Double Light Scattering — Application to the Determination of the Isothermal Compressibility of Pure Fluids Near Their Critical Point

  • Chapter
  • 28 Accesses

Abstract

The behavior of the isothermal compressibility of pure fluids in the critical region is of special interest because this parameter is related to several important physical properties of fluids in the vicinity of the gas-liquid transition. The determination of the isothermal compressibility can be made from the analysis of classical measurements of thermodynamics (P V T data) in a ränge of temperatures not too close to the critical point. Another way is to use optical methods like the interferometric measurements to determine the density profile, the determination of the turbidity (apparent absorption of the incident light beam), or the intensity of the polarized component of the light scattering which is directly related to the isothermal compressibility according to the Einstein-Smoluchowski relation. In the last case it is very difficult to obtain an accurate measurement of the absolute value of the light intensities, with important geometry corrections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. A. Reith and H. L. Swinney, Phys. Rev. A 12, 1094 (1975).

    Article  Google Scholar 

  2. W. M. Gelbart, Adv. Chem. Phys. 26, 1 (1974).

    Google Scholar 

  3. D. W. Oxtoby and W. M. Gelbart, J. Chem. Phys. 60, 3359 (1974).

    Article  Google Scholar 

  4. A. J. Bray and R. F. Chang, Phys. Rev. A 12, 2594 (1975).

    Article  Google Scholar 

  5. H. M. J. Boots, D. Bedeaux, and P. Mazur, Physica 84A, 217 (1976).

    Article  Google Scholar 

  6. Y. Garrabos, R. Tufeu, and B. Le Neindre, to be published.

    Google Scholar 

  7. Y. Garrabos, R. Tufeu, and B. Le Neindre, C.R. Acad. Sei. 282B, 313 (1976).

    Article  Google Scholar 

  8. N. J. Trappeniers, A. C. Michels, and R. H. Huijser, Chem. Phys. Lett. 34, 192 (1975).

    Article  Google Scholar 

  9. D. Beysens, A. Bourgou, and G. Zalczer, J. de Physique, C1 221 (1976).

    Google Scholar 

  10. J. W. Smith, M. Giglio, and G. B. Benedek, Phys. Rev. Lett. 27, 1556 (1971).

    Article  Google Scholar 

  11. V. G. Publielli and N. C. Ford, Jr., Phys. Rev. Lett. 25, 143 (1976).

    Article  Google Scholar 

  12. Y. Rocard, Annales de Physique 10, 116 (1928).

    Google Scholar 

  13. W. T. Estler, R. Hocken, T. Charlton, and L. R. Wilcox, Phys. Rev. A, 12, 2118 (1975).

    Article  Google Scholar 

  14. M. Vincentini-Missoni, J. M. H. Levelt-Sengers, and M. S. Green, Phys. Rev. Lett. 22, 389 (1969).

    Article  Google Scholar 

  15. W. L. Greer, J. M. H. Levelt-Sengers, and J. V. Sengers, J. Phys. Chem. Ref. Data 5, 1 (1976).

    Google Scholar 

  16. J. M. H. Levelt-Sengers and J. V. Sengers, Phys. Rev. A. 12, 2622 (1975).

    Article  Google Scholar 

  17. J. H. Lunacek and D. S. Cannel, Phys. Rev. Lett. 27, 841 (1971).

    Google Scholar 

  18. J. A. White and B. S. Maccabee, Phys. Rev. Lett. 26, 1468 (1971).

    Article  Google Scholar 

  19. R. Hocken and M. R. Moldover, Phys. Rev. Lett. 37, 29 (1976).

    Google Scholar 

  20. D. S. Cannel, Phys. Rev. A 12, 225 (1975).

    Article  Google Scholar 

  21. G. T. Feke, G. A. Hawkins, J. B. Lastovka, and G. B. Benedek, Phys. Rev. Lett. 27, 1780 (1971).

    Article  Google Scholar 

  22. D. A. Baizarini, Can. J. Phys. 50, 2194 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garrabos, Y., Tufeu, R., Le Neindre, B., Oksengorn, B. (1979). Double Light Scattering — Application to the Determination of the Isothermal Compressibility of Pure Fluids Near Their Critical Point. In: Timmerhaus, K.D., Barber, M.S. (eds) High-Pressure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7470-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7470-1_59

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7472-5

  • Online ISBN: 978-1-4684-7470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics