The Effect of Pressure on The Raman Spectra in Trigonal Se and Te

  • S. Minomura
  • K. Aoki
  • N. Koshizuka
  • T. Tsushima


The crystal structure of trigonal Se and Te consists of infinite helical chains which spiral around the crystalline c axis with three atoms per turn. Each atom within the helical chains is tightly bonded to two neighbors with covalent character. The bonding between individual chains is much weaker. The lattice dynamics of trigonal Se and Te have been studied recently by infrared and Raman spectra [1,2], and neutron scattering [3], Richter et al. [4] have reported that the first-order Raman frequencies decrease linearly with increasing pressure up to 8 kbar. Trigonal Se and Te under pressure show a covalent-metallic transition accompanied by a discontinuous change in electrical resistivity at about 180 and 40 kbar, respectively [5,6]. The structure of the high-pressure phases has been studied by x-ray diffraction [7–9], but remains unsolved. Jamieson and McWhan [8] have reported another transition to a β-Po structure for Te at 115 kbar.


Raman Active Mode Helical Chain Geometrical Coefficient Nonlinear Softening Raman Active Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Martin and G. Lucovsky, Phys. Rev. B 13, 1383 (1976).CrossRefGoogle Scholar
  2. 2.
    A. S. Pine and G. Dresselhaus, Phys. Rev. B 4, 356 (1971).CrossRefGoogle Scholar
  3. 3.
    W. G. Hamilton, B. Lassier, and M. I. Kay, J. Phys. Chem. Solids 35, 1089 (1974).CrossRefGoogle Scholar
  4. 4.
    W. Richter, J. B. Renucci, and M. Cardona, Phys. Status Solidi B 56, 223 (1973).CrossRefGoogle Scholar
  5. 5.
    P. W. Bridgman, Proc. Am. Acad. Arts Sei. 81, 165 (1952).CrossRefGoogle Scholar
  6. 6.
    S. Minomura, K. Aoki, O. Shimomura, and K. Tanaka, in Electronic Phenomena in Noncrystalline Semiconductors, B. T. Kolomiets, ed., Leningrad, U.S.S.R. (1976), p. 289.Google Scholar
  7. 7.
    S. S. Kabalkina, L. F. Vereshchagin, and B. M. Shulenin, Soviet Physics-JETP 18, 1422 (1964).Google Scholar
  8. 8.
    J. C. Jamieson and D. B. McWhan, J. Chem. Phys. 43, 1149 (1965).CrossRefGoogle Scholar
  9. 9.
    D. R. McCann and L. Cartz, J. Chem. Phys. 56, 2552 (1972).CrossRefGoogle Scholar
  10. 10.
    G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman, J. Appl. Phys. 46, 2774 (1975).CrossRefGoogle Scholar
  11. 11.
    T. Nakayama and A. Odajima, J. Phys. Soc. Japan 33, 12 (1972).Google Scholar
  12. 12.
    N. J. Shevchik, M. Cardona, and J. Tejeda, Phys. Rev. B 8, 2833 (1973).Google Scholar
  13. 13.
    M. Schlüter, J. D. Joannopoulos, M. L. Cohen, L. Ley, S. Kowalczyk, R. Pollak, and D. A. Shirley, Solid State Commun. 15, 1007 (1974).CrossRefGoogle Scholar
  14. 14.
    J. D. Joannopoulos, M. Schlüter, and M. L. Cohen, Phys. Rev. B 11, 2186 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • S. Minomura
    • 1
  • K. Aoki
    • 1
  • N. Koshizuka
    • 2
  • T. Tsushima
    • 2
  1. 1.University of TokyoJapan
  2. 2.Electrotechnical Laboratory TokyoJapan

Personalised recommendations