Skip to main content
  • 28 Accesses

Abstract

The physics of dense fluids is one of the most fundamental and important areas of application in high-pressure technology. The research in this field can be roughly divided into three areas: (1) Equilibrium properties; (2) Excited State and optical properties; and (3) Transport properties.

Invited paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York (1954).

    MATH  Google Scholar 

  2. S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids, John Wiley and Sons, New York (1965).

    Google Scholar 

  3. A. Rahman, Phys. Rev. 136, A 405 (1964).

    Google Scholar 

  4. D. Levesque and L. Verlet, Phys. Rev. A 2, 2514 (1970).

    Article  Google Scholar 

  5. D. Levesque, L. Verlet, and J. Kurkijarvi, Phys. Rev. A 7, 1690 (1973).

    Article  Google Scholar 

  6. B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53, 3813 (1970).

    Article  Google Scholar 

  7. W. T. Ashurst and W. G. Hoover, Phys. Rev. A 11, 658 (1975).

    Article  Google Scholar 

  8. W. T. Ashurst and W. G. Hoover, preprint.

    Google Scholar 

  9. W. T. Ashurst and W. G. Hoover, AIChE J. 21, 410 (1975).

    Article  Google Scholar 

  10. H.J.M. Hanley and E.G.D. Cohen, Physica 83A, 215 (1975).

    Google Scholar 

  11. J. van Loef, Physica 62, 345 (1972).

    Article  Google Scholar 

  12. R. Fisher and R. 0. Watts, Aust. J. Phys. 25, 529 (1972).

    Google Scholar 

  13. J. van Loef, Physics Lett. 35A, 169 (1971).

    Article  Google Scholar 

  14. P. Carelli, I. Modena, and F. P. Ricci, Phys. Rev. A7, 298 (1973)

    Article  Google Scholar 

  15. P. Carelli, A. de Santis, I. Modena, and F. P. Ricci, Phys. Rev. A13, 1131 (1976).

    Article  Google Scholar 

  16. Pv H. Oosting and N. J. Trappeniers, Physica 51, 418 (1971).

    Article  Google Scholar 

  17. H.J.M. Hanley and R. 0. Watts, Mol. Phys. 29, 1907 (1975).

    Article  Google Scholar 

  18. K. Krynicki, E. J. Rahkamaa, and J. G. Powles, Mol. Phys. 28, 853 (1974).

    Article  Google Scholar 

  19. P.S.Y. Cheung and J. G. Powles, Mol. Phys. 921 (1975).

    Google Scholar 

  20. J.H.M. Hanley, R. D. McCarty, and E.G.D. Cohen, Physica 60, 322 (1972).

    Article  Google Scholar 

  21. W. M. Haynes, Physica 76, 1 (1974).

    Article  Google Scholar 

  22. W. M. Haynes, Physica _67, 440 (1973).

    Google Scholar 

  23. J. Vermesse and D. Vidal, Physica 86A, 429 (1977).

    Article  Google Scholar 

  24. E. M. Gosling, I. R. McDonald, and K. Singer, Mol. Phys. 26, 1475 (1973).

    Article  Google Scholar 

  25. T. Naitoh and S. Ono, Physics Lett. 57A, 448 (1976).

    Article  Google Scholar 

  26. J. Vermesse, M. Provansal, and J. Brielles, preprint.

    Google Scholar 

  27. B. Y. Baharudin, D. A. Jackson, P. E. Schoen, and J. Rouch, Physics Lett. 51A, 409 (1975).

    Article  Google Scholar 

  28. D. E. Diller, J.H.M. Hanley, and H. M. Roder, Cryogenics 10, 286 (1970).

    Article  Google Scholar 

  29. J. C. Allegra, A. Stein, and G. F. Allen, J. Chem. Phys. 55, 1716 (1971).

    Article  Google Scholar 

  30. D. W. Oxtoby and W. M. Gelbart, J. Chem. Phys. 61, 2957 (1974).

    Article  Google Scholar 

  31. D. W. Oxtoby, J. Chem. Phys. 62, 1463 (1975).

    Article  Google Scholar 

  32. H. J. Strumpf, A. F. Collings, and C. J. Pings, J Chem. Phys. 60, 3109 (1974).

    Article  Google Scholar 

  33. V. N. Zozulya and Yu. P. Blagoi, JETP 39_, 99 (1974).

    Google Scholar 

  34. H.J.M. Hanley, R. D. McCarty, and W. M. Haynes, Cryogenics 15, 413 (1975).

    Article  Google Scholar 

  35. A. Michels, J. V. Sengers, and P. S. van der Gulik, Physica 28, 1216 (1962).

    Article  Google Scholar 

  36. N. H. Nachtrieb, Ber. Bunsenges. Phys. Chem. 80, 678 (1976).

    Article  Google Scholar 

  37. P. Protopapas, H. C. Anderson, and N.A.D. Parlee, J. Chem. Phys. 59, 15 (1973).

    Article  Google Scholar 

  38. A. Rahman, R. H. Fowler, and A. H. Narten, J. Chem. Phys. 57, 3010 (1972).

    Article  Google Scholar 

  39. F.Lantelme, P. Turq, B. Quentrec, and J.W.E. Lewis, Mol. Phys. 28, 1537 (1974)

    Article  Google Scholar 

  40. F. Lantelme, P. Turq, and P. Schofield, Mol. Phys. 11, 1085 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oxtoby, D.W. (1979). Transport in Dense Fluids. In: Timmerhaus, K.D., Barber, M.S. (eds) High-Pressure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7470-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7470-1_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7472-5

  • Online ISBN: 978-1-4684-7470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics