The Thermodynamics of Melting for Alkali Metals

  • I. N. Makarenko
  • A. M. Nikolaenko
  • S. M. Stishov


In spite of the fact that there is no general theory of melting, the status of this phenomenon for simple substances of the argontype is clear enough. Real and “machine” experiments indicate the prevailing role of the short-range repulsive interactions in the crystallization of rare gases [1,2]. These results indicate the important conclusions concerning the melting thermodynamics of rare-gas systems at very high pressures. In particular, since with increasing density the contribution of the repulsive interaction to the free energy and pressure of the rare-gas system will also increase, we can insist that the following asymptotic relations take place at rare-gas melting:
$$\left. {\begin{array}{*{20}{c}} {\Delta S/R \to Const} \\ {\Delta V/{{V}_{s}} \to Const} \\ {{{P}_{m}} \to \alpha \;T_{m}^{c}} \\ \end{array} } \right\}P \to \infty$$
The relations in (1) lead immediately to the derivations of the unlimited increase of the melting temperature on compression and of the impossibility of a critical point on the melting curve.


Alkali Metal Ionic Energy Melting Curve Asymptotic Relation Melting Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Hoover and M. Ross, Contemp. Phys. 12, 339 (1971).CrossRefGoogle Scholar
  2. 2.
    S. M. Stishov, Sov. Phys. -Uspekhi 17, 625 (1975).CrossRefGoogle Scholar
  3. 3.
    G. C. Kennedy, A. Jayaraman, and R. C. Newton, Phys. Rev. 126, 1363 (1962).CrossRefGoogle Scholar
  4. 4.
    H. D. Luedemann and G. C. Kennedy, J. Geophys. Res. 72, 2795 (1968).CrossRefGoogle Scholar
  5. 5.
    W. A. Harrison, Pseudopotentials in the Theory of Metals, Benjamin, New York (1966).Google Scholar
  6. 6.
    S. G. Brush, H. L. Sahlin, and E. Teller, J. Chem. Phys. 45, 2102 (1966).CrossRefGoogle Scholar
  7. 7.
    E. L. Pollock and J. P. Hansen, Phys. Rev. A8, 3110 (1973).CrossRefGoogle Scholar
  8. 8.
    H. E. Dewitt, Phys. Rev. A14, 1290 (1976).CrossRefGoogle Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Addison- Wesley, Reading, Massachusetts (1965).MATHGoogle Scholar
  10. 10.
    D. Straud and N. W. Ashcroft, Phys. Rev. R5, 371 (1972).CrossRefGoogle Scholar
  11. 11.
    I. N. Makarenko, V. A. Ivanov, and S. M. Stishov, Instr. Exp. Tech. (USSR), 3, 862 (1974).Google Scholar
  12. 12.
    I. N. Makarenko, A. M. Nikolaenko, and S. M. Stishov, in Liquid Metals, R. Evans and D. A. Greenwood, eds., Institute of Physics Conference Series number 30 (1977).Google Scholar
  13. 13.
    V. A. Ivanov, I. N. Makarenko, A. M. Nikolaenko, and S. M. Stishov, Phys. Lett. 47A, 75 (1974).Google Scholar
  14. 14.
    I. N. Makarenko, V. A. Ivanov, and S. M. Stishov, JETP Lett. 18, 187 (1973).Google Scholar
  15. 15.
    D. L. Price, K. S. Singwi, and M. P. Tosi, Phys. Rev. B2, 2983 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • I. N. Makarenko
    • 1
  • A. M. Nikolaenko
    • 1
  • S. M. Stishov
    • 1
  1. 1.Institute of Crystallography of Academy of SciencesMoscowUSSR

Personalised recommendations