Advertisement

The Synthesis of A15-Type Materials at High Pressures: Comments and Critiques

  • A. W. Webb
  • T. L. Francavilla
  • R. A. Meussner
  • R. M. Waterstrat

Abstract

Materials with the A15 structure are of interest principally because a number of them are superconductors. Nb3Ge, which has the highest known superconducting transition temperature To, 23.2 K, has this A15 structure [1]. Of 65 known A15 Compounds 41 are superconducting. Figure 1 shows the structure of an A15 unit cell. The B atoms, hatched here, form a body-centered cubic network. Woven through this network are three mutually orthogonal chains of A atoms, shown as stippled here. There is evidence that the integrity of these A chains is important to superconductivity [2]. Figure 2 shows the location of the A and B atoms in the Periodic Table. The A atoms (stippled) are from the Ta, V, and Cr groups, with V and Nb forming 30 of these A15 Compounds. Technetium has been reported acting as the A element in one Compound [3]. The B atoms (hatched) are from the groups of transition metals from Mn through Zn, and the groups of non-transition metals A1, Si and P. Beryllium is included because Mo3Be has been reported to form with the Al5 structure [4]. Nb3Te has been formed by high pressure, high temperature techniques [5].

Keywords

Boron Nitride Elemental Powder Nitride Reaction Molybdenum Sheet High Temperature Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Testardi, J. H. Wernick, and W. A. Royer, Solid State Commun. 15, 49 (1974).CrossRefGoogle Scholar
  2. 2.
    R. D. Blaugher, R. E. Hein, J. E. Cox, and R. M. Waterstrat, J. Low Temp. Phys. 1, 539 (1969).CrossRefGoogle Scholar
  3. 3.
    M. V. Nevitt, in Intermetallic Compounds, John Wiley and Sons, New York (1967).Google Scholar
  4. 4.
    R. M. Paine and J. M. Carrabine, Acta Crystallogr. 13, 680 (1960).CrossRefGoogle Scholar
  5. 5.
    J. F. Cannon, D. L. Robertson, H. T. Hall, and A. C. Lawson, J. Phys. Chem. Solids 35, 1181 (1974).CrossRefGoogle Scholar
  6. 6.
    R. Flukiger and J.-L. Jorda, paper presented at Workshop on Applications of Phase Diagrams in Metallurgy and Ceramics, National Bureau of Standards, Gaithersburg. Published in NBS Special Publ. 496, 375 (1978).Google Scholar
  7. 7.
    D. Dew-Hughes and V. G. Rivlin, Nature 250, 723 (1974)CrossRefGoogle Scholar
  8. D. Dew-Hughes and V. G. Rivlin, L. Gold, Phys. Stat. Sol. 4, 261 (1964).CrossRefGoogle Scholar
  9. 8.
    B. N. Das, J. E. Cox, R. W. Huber, and R. A. Meussner, Metallurg. Trans. 8A, 541 (1977).Google Scholar
  10. 9.
    L. Kammerdiner and H. L. Luo, J. Appl. Phys. 45, 4590 (1974).CrossRefGoogle Scholar
  11. 10.
    R. M. Waterstrat, K. Yvon, H. D. Flack, and E. Parthe, Acta Crystallogr. B31, 2765 (1975).CrossRefGoogle Scholar
  12. 11.
    Powder Diffraction File (Joint Committee on Powder Diffraction Standards, Swarthmore, Pennsylvania (1976).Google Scholar
  13. 12.
    D. U. Gubser, R. A. Hein, R. M. Waterstrat, and A. Junod, Phys. Rev. B 14, 3856 (1976).CrossRefGoogle Scholar
  14. 13.
    H. T. Hall, Rev. Sei. Instrum. 29, 267 (1958)CrossRefGoogle Scholar
  15. H. T. Hall, Rev. Sei. Instrum. 33, 1278 (1962).CrossRefGoogle Scholar
  16. 14.
    P. W. Bridgman, Proc. A. Acad. Arts Sei. 62, 211 (1927)Google Scholar
  17. R. N. Jeffrey, J. D. Barnett, H, B. Vanfleet, and H. T. Hall, J. Appl. Phys. 37, 3172 (1966)CrossRefGoogle Scholar
  18. D. L. Decker, W. A. Bassett, L. Merrill, H. T. Hall, and J. D. Barnett, J. Phys. Chem. Reference Data 1, 773 (1972).CrossRefGoogle Scholar
  19. 15.
    I. C. Getting and G. C. Kennedy, J. Appl. Phys. 41, 4552 (1970).CrossRefGoogle Scholar
  20. 16.
    B. W. Roberts, J. Phys. Chem. Reference Data 5, 581 (1976).CrossRefGoogle Scholar
  21. 17.
    R. D. Blaugher, IEEE Trans. Mag. MAG-13, 821 (1977).Google Scholar
  22. 18.
    J.-M. Leger and H. T. Hall, J. Less-Common Metals 34, 17 (1974).CrossRefGoogle Scholar
  23. 19.
    J.-M. Leger and H. T. Hall, J. Less-Common Metals 32, 181 (1973).CrossRefGoogle Scholar
  24. 20.
    L. F. Vereshchagin, E. M. Savitskii, V. V. Evdokimova, V. I. Novokshenov, and V. G. Petrenko, Pis’ma Zh. Eksp. Teor. Fiz. 24, 218 (1976).Google Scholar
  25. 21.
    G. R. Johnson and D. H. Douglass, J. Low Temp. Phys. 14, 565 (1974).CrossRefGoogle Scholar
  26. 22.
    R. H. Willens, T. H. Geballe, A. C. Gossard, J. P. Maita, A. Menth, G. W. Hull, Jr. and R. R. Soden, Solid State Commun. 7, 837 (1969).CrossRefGoogle Scholar
  27. 23.
    C. E. Lundin and A. S. Yamamoto, Trans. AIME 226, 863 (1966).Google Scholar
  28. 24.
    V. M. Pan, V. P. Alekseevskii, A. G. Popov, Yu. I. Beletskii, L. M. Yupko, and V. V. Yarosh, JETP Lett. 21, 228 (1975).Google Scholar
  29. 25.
    E. F. Skelton, D. U. Gubser, S. C. Yu, I. L. Spain, R. M. Waterstrat, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • A. W. Webb
    • 1
  • T. L. Francavilla
    • 1
  • R. A. Meussner
    • 1
  • R. M. Waterstrat
    • 2
  1. 1.Naval Research LaboratoryUSA
  2. 2.National Bureau of StandardsUSA

Personalised recommendations