Neutron Scattering at 4.5 GPa and 20 K

  • D. B. McWhan


Although the pressure variable is of fundamental physical importance, the technology to use high pressures in elastic neutron scattering experiments above pressures of 1 GPa only became available about 1970, and the first inelastic neutron scattering experiments in this pressure range were done in 1975. Presently, samples of about 1/4 cc can be studied from 1 atm to 4.5 GPa at temperatures from 20 K to room temperature. The relatively small sample volume is the fundamental limitation to the types of inelastic neutron scattering experiments which can be done with currently available neutron sources. It is possible to study the effect of pressure on phonons and crystal field levels up to energy transfers of the order of 10 MeV, and this is sufficient for a number of important problems.


Maraging Steel Inelastic Neutron Inelastic Neutron Scattering Elastic Neutron Beryllium Copper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Umebayashi, G. Shirane, B. C. Frazer, and W. B. Daniels, Phys. Rev. 165, 688 (1968).CrossRefGoogle Scholar
  2. 2.
    J. Eckert, J. D. Axe, and W. B. Daniels, in Proc. Neutron Scattering Conference, Gatlinburg, Tennessee, Conf. 760601-P1 (1976), p. 187.Google Scholar
  3. 3.
    J. Paureau and C. Vettier, Rev. Sei. Instr. 46, 1484 (1975).CrossRefGoogle Scholar
  4. 4.
    R. M. Moon, W. C. Koehler, F. Holtzberg, and D. B. McWhan, J. Appl. Phys. 49, 2107 (1978).CrossRefGoogle Scholar
  5. 5.
    R. M. Brugger, R. B. Bennion, T. G. Worlton, and W. R. Myers, Trans. Am. Crystallogr. Assoc. 5, 141 (1969).Google Scholar
  6. 6.
    J. D. Jorgenson, T. G. Worlton, and J. C. Jamieson, paper F-l-B presented at 6th AIRAPT Intern. High Pressure Conference, University of Colorado, Boulder, Colorado, July 25–29, 1977.Google Scholar
  7. 7.
    P. W. Bridgman, Proc. Am. Acad. Arts Sei. 72, 45 (1937).CrossRefGoogle Scholar
  8. 8.
    D. B. McWhan, D. Bloch and G. Parisot, Rev. Sei. Instr. 45, 643 (1974).CrossRefGoogle Scholar
  9. 9.
    D. B. McWhan, G. Parisot and D. Bloch, J. Phys. F 4, L69 (1974).CrossRefGoogle Scholar
  10. 10.
    D. B. McWhan, R. J. Birgeneau, W. A. Bonner, H. Taub, and J. D. Axe, J. Phys. C 8, L81 (1975).CrossRefGoogle Scholar
  11. 11.
    D. Bloch, J. Paureau, J. Voiron, and G. Parisot, Rev. Sei. Instr. 47, 296 (1976).CrossRefGoogle Scholar
  12. 12.
    D. B. McWhan and C. Vettier, to be published.Google Scholar
  13. 13.
    D. N. Lyon, D. B. McWhan, and A. L. Stevens, Rev. Sei. Instr. 38, 1234 (1967).CrossRefGoogle Scholar
  14. 14.
    G. J. Piermarini, S. Block, J. D. Barnett, J. Appl. Phys. 44, 5377 (1973).CrossRefGoogle Scholar
  15. 15.
    C. Vettier, D. B. McWhan, E. I. Blount, and G. Shirane, Phys. Rev. Letters 39, 1028 (1977).CrossRefGoogle Scholar
  16. 16.
    D. Debray, R. Millet, D. Jerome, S. Barisic, L. Giral, and J. M. Fabre, J. de Physique Letters 38, L227 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • D. B. McWhan
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations