Advertisement

High Pressure Studies of Palladium Alloy/Hydrogen Systems

  • B. Baranowski
  • F. A. Lewis

Abstract

At relatively low pressures the only chemical result of an interaction between hydrogen and several of the transition metals is for comparatively small quantities of hydrogen to be adsorbed by the metal. In addition to occupying a limited number of interstitial positions in the metal lattice, this adsorbed hydrogen can also be preferentially located on the internal surfaces of voids, or on less grossly defective regions such as dislocation networks where it can produce mechanically undesirable effects.

Keywords

Hydrogen Content Hydrogen Pressure Hydrogen Adsorption Platinum Content Platinum Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Baranowski and R. Wisniewski, J. Phys. Chem. Solids 29, 1275 (1968).CrossRefGoogle Scholar
  2. 2.
    B. Baranowski and R. Wisniewski, Phys. Stat. Sol. 35, 593 (1969).CrossRefGoogle Scholar
  3. 3.
    B. Baranowski, Platinum Metals Rev. 16, 10 (1972).Google Scholar
  4. 4.
    B. Baranowski, Ber. Bunsenges. Physik. Chem. 76, 714 (1972).Google Scholar
  5. 5.
    J. C. Barton and F. A. Lewis, Z. Physik. Chem. NF 33, 99 (1962).CrossRefGoogle Scholar
  6. 6.
    T. Skoskiewicz and B. Baranowski, Phys. Stat. Sol. 30, K33 (1968).CrossRefGoogle Scholar
  7. 7.
    T. Skoskiewicz, Phys. Stat. Sol. 6a, 29 (1971).Google Scholar
  8. 8.
    W. Buckel and B. Stritzker, Phys. Lett. 43A, 403 (1973).CrossRefGoogle Scholar
  9. 9.
    B. N. Ganguly, Phys. Rev. 14B, 3848 (1976).CrossRefGoogle Scholar
  10. 10.
    J.M.E. Harper, Phys. Lett. 47A, 69 (1974).CrossRefGoogle Scholar
  11. 11.
    D. S. MacLachlan, R. Mailfert, J. P. Burger, and B. Souffache, Solid State Commun. 7, 281 (1975).CrossRefGoogle Scholar
  12. 12.
    A. W. Szafranski, T. Skoskiewicz, and B. Baranowski, Phys. Stat. Sol. 37a, K163 (1976).CrossRefGoogle Scholar
  13. 13.
    M. Kuballa and B. Baranowski, Ber. Bunsenges. Physik. Chem. 78, 335 (1974).Google Scholar
  14. 14.
    M. Nuovo, F. M. Mazzolai and F. A. Lewis, J. Less-Common Metals 49, 37 (1976).CrossRefGoogle Scholar
  15. 15.
    G. J. Zimmermann, J. Less-Common Metals 49, 49 (1976).CrossRefGoogle Scholar
  16. 16.
    B. Baranowski, S. Majchrzak, and T. B. Flanagan, J. Phys. Chem. 77, 850 (1973).CrossRefGoogle Scholar
  17. 17.
    A. W. Szafranski and B. Baranowski, Phys. Stat. Sol. 9a, 435 (1972).CrossRefGoogle Scholar
  18. 18.
    J. B. Darby and K. M. Myles, Met. Trans. 3, 653 (1972).CrossRefGoogle Scholar
  19. 19.
    B. Baranowski, F. A. Lewis, S. Majchrzak, and R. Wisniewski, J.C.S. Faraday Trans I 68, 653 (1972).Google Scholar
  20. 20.
    B. Baranowski, F. A. Lewis, W. D. McFall, S. Filipec, and T. C. Witherspoon, to be published.Google Scholar
  21. 21.
    A. W. Carson, T. B. Flanagan, and F. A. Lewis, Trans. Faraday Soc. 363, 1332 (1960).CrossRefGoogle Scholar
  22. 22.
    F. A. Lewis, W. D. McFall, and T. C. Witherspoon, Z. Physik. Chem. NF 84, 31 (1973).CrossRefGoogle Scholar
  23. 23.
    P. Vignet, R. Gabilly, J. Lutz, and R. Zermizoglou, French Atomic Energy Commission (Saclay) Rept. DPC. IS.SC 1/63–346/PV.DG (1963).Google Scholar
  24. 24.
    J.A.S. Green and F. A. Lewis, Trans. Faraday Soc. 60, 2234 (1964).CrossRefGoogle Scholar
  25. 25.
    F. A. Lewis, R. C. Johnston, M. C. Witherspoon, W. F. N. Leitch, A. Obermann, and S. F. Deane, Surface Tech. 4, 89 (1976).CrossRefGoogle Scholar
  26. 26.
    E. Wicke, G. Sicking, B. Huber, private communicationGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • B. Baranowski
    • 1
  • F. A. Lewis
    • 2
  1. 1.Institute for Physical Chemistry, Academy of SciencesWarsawPoland
  2. 2.Queen’s University BelfastNorthernIreland

Personalised recommendations