Electrical Characterization of Pressure-Induced Phase Transitions

  • B. A. Lombos
  • H. M. Mahdaly
  • B. C. Pant


A procedure has been developed for the direct Observation of the pressure-induced polymorphic phase transitions. The resistance Variation, which is due to the different electronic structures of the two phases of the mercury chalcogenides [1,2], is measured directly on the sample. Small sample volume increases the sensitivity of the technique; therefore, the interaction of its volume Variation with the generated pressure is negligible. Thus, the pressure remains an independent variable during the transition. The kinetics and the mechanism of the reaction can be followed directly and independently of the pressure-transmitting medium. Although the measurement of volume Variation as a function of pressure seems to closely follow the advancement of the transition reactions, as is detected through the pressure-transmitting medium, the technique is an indirect one. Furthermore, to achieve sufficient accuracy, large sample volumes are required. Consequently, the volume change of the sample generates an auxiliary uncontrollable pressure Variation which counteracts the experimentally adjusted pressure. This phenomenon is called retropressure [3,4].


Resistance Variation Hysteresis Curve Transition Pressure Nucleation Center Transition State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Kafalas, H. C. Gatos, M. C. Lavine, and M. D. Banus, J. Phys. Chem. Solids 22, 1541 (1962).CrossRefGoogle Scholar
  2. 2.
    A. Lacam, J. Peyronneau, L. J. Engel, and B. A. Lombos, Chem. Phys. Letters 18, 129 (1973).CrossRefGoogle Scholar
  3. 3.
    A. Lacam, J. Peyronneau, and J. L. Kopystynski, J. Physique 34, 1055 (1973).CrossRefGoogle Scholar
  4. 4.
    J. L. Kopystynski, J. L. Peyronneau, and A. Lacam, J. Physique 35, 609 (1974).CrossRefGoogle Scholar
  5. 5.
    L. L. Fermor, Geol. Mag. 1, 65 (1914).CrossRefGoogle Scholar
  6. 6.
    F. Birch, in Solids Under Pressure, W. Paul and D. M. Warschauer, eds., McGraw-Hill Book Company, New York (1963), p. 131.Google Scholar
  7. 7.
    B. A. Lombos, B. Ghicopoulos, S. Bhattacharyya, and C. B. Pant, Can. J. Phys. 54, 48 (1976).CrossRefGoogle Scholar
  8. 8.
    F. Birch, in Geol. Soc. Am. Mem., S. P. Clark, Jr., ed. (1966), p. 97.Google Scholar
  9. 9.
    A. Lacam and J. Peyronneau, J. Physique 34, 1047 (1973).CrossRefGoogle Scholar
  10. 10.
    A. Lacam, B. A. Lombos, and B. Vodar, Phys. Earth Planet Interiors 13, 511 (1970).CrossRefGoogle Scholar
  11. 11.
    B. A. Lombos, E.Y.M. Lee, A. L. Kipling, and R. W. Krawczyniuk, J. Phys. Chem. Solids 36, 1193 (1975).CrossRefGoogle Scholar
  12. 12.
    W. Jander, Z. Anorg. Allgem. Chem. 163, 1 (1927).CrossRefGoogle Scholar
  13. 13.
    M. G. Evans and M. Polanyi, Trans. Faraday Soc. 31, 875 (1935).CrossRefGoogle Scholar
  14. 14.
    P. W. Bridgman, Proc. Am. Acad. Arts Sei. 52, 57 (1916)CrossRefGoogle Scholar
  15. P. W. Bridgman, Proc. Am. Acad. Arts Sei. 74, 21 (1940)CrossRefGoogle Scholar
  16. P. W. Bridgman, Proc. Am. Acad. Arts Sei. 76, 55 (1948).Google Scholar
  17. 15.
    B. Gutenberg and C. F. Richter, Seismicity of the Earth and Associated Phenomena, Hafner Publishing Company (1965), p. 10.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • B. A. Lombos
    • 1
  • H. M. Mahdaly
    • 1
  • B. C. Pant
    • 1
  1. 1.Concordia UniversityMontrealCanada

Personalised recommendations