Advertisement

Equation of State Experiments in the Pressure Region Near 20 Megabars

  • C. E. RaganIII
  • M. G. Silbert
  • B. C. Diven

Abstract

About seven years ago a program was initiated at the Los Alamos Scientific Laboratory (LASL) to use underground nuclear explosions to obtain equation of state (EOS) data at high pressures. The main goals of this program are to determine several Hugoniot points in the 1.0 to 3.0 TPa (10 to 30 Mbar) pressure region for a standard material and then use this standard in impedance-matching experiments. In such experiments, Hugoniot data for other sample materials are obtained relative to the standard from measurements of the shock velocities in both the standard and the sample. A number of Soviet investigators [1–5] have used a similar approach, with lead as their standard material. In these experiments they used shocks generated by underground explosions to obtain Hugoniot data for several materials in the 1.0 to 5.0 TPa pressure region, relative to lead. However; they relied upon an extrapolation of the lead Hugoniot from the region of available experimental data to the region where the Thomas-Fermi-Dirac (TFD) statistical model of the atom is believed applicable. This extrapolation procedure is subject to uncertainty, and if a few experimental points could be obtained in the intermediate pressure region for lead or any other standard, then this uncertainty could be reduced by removing the possibility of any gross unanticipated phenomena.

Keywords

Particle Velocity Pressure Region Shock Velocity Underground Explosion Underground Nuclear Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Al’tshuler, B. N. Moiseev, L. V. Popov, G. V. Simakov, and R. F. Trunin, Sov. Phys. JETP 27, 420 (1968).Google Scholar
  2. 2.
    R. F. Trunin, M. A. Podurets, B. N. Moiseev, G. V. Simakov, and L. V. Popov, Sov. Phys. JETP 29, 630 (1969).Google Scholar
  3. 3.
    M. A. Podurets, G. V. Simakov, R. F. Trunin, L. V. Popov, and B. N. Moiseev, Sov. Phys. JETP 35, 375 (1972).Google Scholar
  4. 4.
    R. F. Trunin, M. A. Podurets, G. V. Simakov, L. V. Popov, and B. N. Moiseev, Sov. Phys. JETP 35, 550 (1972).Google Scholar
  5. 5.
    R. F. Trunin, G. V. Simakov, M. A. Podurets, B. N. Moiseyev, and L. V. Popov, Earth Physics 1, 13 (1970).Google Scholar
  6. 6.
    C. E. Ragan III, M. G. Silbert, and B. C. Diven, J. Appl. Phys. 48, 2860 (1977).CrossRefGoogle Scholar
  7. 7.
    R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, in High-Velocity Impact Phenomena, R. Kinslow, ed., Academic Press, New York (1970), p. 293.CrossRefGoogle Scholar
  8. 8.
    J. F. Barnes, Phys. Rev. 153, 269 (1967); J. F. Barnes, private communication (1974).Google Scholar
  9. 9.
    E. D. Cashwell, J. R. Neergaard, W. M. Taylor, and G. D. Turner, Los Alamos Scientific Laboratory Rept. LA-4751 (1972).Google Scholar
  10. 10.
    W. Fickett, Los Alamos Scientific Laboratory Rept. LA-5910-MS (1975).Google Scholar
  11. 11.
    J. F. Barnes and G. T. Rood, private communication (1973).Google Scholar
  12. 12.
    J. F. Barnes, private communication (1973).Google Scholar
  13. 13.
    C. E. Ragan III, M. G. Silbert, A. N. Ellis, E. E. Robinson, and M. J. Daddario, Los Alamos Scientific Laboratory Rept. LA-6946-MS (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • C. E. RaganIII
    • 1
  • M. G. Silbert
    • 1
  • B. C. Diven
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations