Skip to main content

Future Trends in High Pressure — High Temperature Synthesis of Superconducting Materials

  • Chapter
High-Pressure Science and Technology
  • 27 Accesses

Abstract

Over the past ten years, more than 150 studies have been published in the field of high pressure synthesis spanning an even wider range of materials. In this paper we have chosen to restrict our discussion to those high pressure-high temperature (HP-HT) synthesis efforts which are specifically addressed to superconducting materials. In an effort to suggest future trends, we have reviewed published work in this area over the past decade. Recent efforts to synthesize new superconductors at NRL are also summarized. Some of the shortcomings of current synthesis efforts are delineated, followed by suggestions to improve future work in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. W. Webb, T. L. Francavilla, R. A. Meussner, and R. M. Waterstrat, in Proceedings 6th AIRAPT Intern. High Pressure Conference Plenum Press, New York (1978).

    Google Scholar 

  2. J. R. Gavaler, Appl. Phys. Lett. 23, 480 (1973).

    Article  Google Scholar 

  3. L. R. Testardi, J. H. Wernick, and W. A. Royer, Solid State Comm. 15, 49 (1974).

    Article  Google Scholar 

  4. J. B. Goodenough, J. A. Kafalas, and J. M. Longo, in Preparative Methods in Solid State Chemistry Academic Press, New York (1972), p. 1.

    Google Scholar 

  5. T. F. Smith, in AIP Conference Proceedings Vol. 4 (1972), p. 293.

    Article  Google Scholar 

  6. T. F. Smith, J. Low Temp. Phys. 6, 171 (1972).

    Article  Google Scholar 

  7. P. C. Donohue and H. S. Young, J. Solid State Chem. 1, 143 (1970).

    Article  Google Scholar 

  8. J. M. Vandenberg and B. T. Matthias, Mat. Res. Bull. 9, 1085 (1974).

    Article  Google Scholar 

  9. P. C. Donohue, Inorganic Chem. 9, 335 (1970).

    Article  Google Scholar 

  10. L. G. Boiko and S. V. Popova, ZhETF Pis. Red. 12, 101 (1970).

    Google Scholar 

  11. A. C. Lawson, J. F. Cannon, D. L. Robertson, and H. T. Hall, J. Less-Common Metals 32, 173 (1973).

    Article  Google Scholar 

  12. S. V. Popova, L. N. Fomicheva, and N. I. Pal’nikov, ZhETF Pis. Red. 20, 648 (1974) (JEPT Lett. 20, 298 (1974)).

    Google Scholar 

  13. W. L. McMillan, Phys. Rev. 167 331 (1968).

    Google Scholar 

  14. P. B. Allen and R. C. Dynes, Phys. Rev. 12, 905 (1975).

    Article  Google Scholar 

  15. L. R. Testardi, in Physical Acoustics W. P. Mason and R. N. Thurston, ed., Academic Press, New York (1973), p. 193.

    Google Scholar 

  16. M. Weger and I. B. Goldberg, in Solid State Physics Vol. 28, F. Seitz and D. Turnbull, ed., Academic Press, New York (1973), p 1.

    Google Scholar 

  17. R. A. Hein, in The Science and Technology of Superconductivity W. D. Gregory, W. N. Mathews, Jr., and E. A. Edelsack, ed., Plenum Press, New York (1973), p. 333.

    Google Scholar 

  18. Y. A. Izyumov and Z. Z. Kurmaev, Soviet Phys.-Usp. 17, 356 (1974); (Usp. Fiz. Nauk 113, 193 ).

    Google Scholar 

  19. D. Dew-Hughes, Cryogenics 15, 435 (1975).

    Article  Google Scholar 

  20. L. Gold, Phys. Stat. Sol. 4, 261 (1964).

    Article  Google Scholar 

  21. D. Dew-Hughes and V. K. Rivlin, Nature 250 435 (1975).

    Google Scholar 

  22. B. M. Matthias, Phys. Today 24, 23 (1971).

    Article  Google Scholar 

  23. S. Geller, Acta Cryst. 9, 885 (1956).

    Article  Google Scholar 

  24. G. R. Johnson and D. H. Douglas, J. Low Temp. Phys. 14, 565 (1974).

    Article  Google Scholar 

  25. L. D. Hartsough, J. Phys. Chem. Solids 35, 1691 (1974).

    Article  Google Scholar 

  26. D. Dew-Hughes and V. G. Rivlin, Nature 250 723 (1974).

    Google Scholar 

  27. H. T. Hall, in Progress in Inorganic Chem. Vol. 7, F. A. Cotton, ed., Interscience Publishers, New York (1966), p. 1.

    Google Scholar 

  28. J-M. Leger and H. T. Hall, J. Less-Common Metals 32, 181 (1973).

    Article  Google Scholar 

  29. V. M. Pan, V. P. Alekseevskii, A. G. Popov, Y. I. Beletskii, L. M. Yupko, and V. V. Yarosh, ZhETF Pis. Red. 21, 494 (L975); (JETP Lett. 21, 228 (1975)).

    Google Scholar 

  30. G. W. Webb, L. J. Vieland, R. E. Miller, and A. Wicklund, Solid State Comm. 9, 1769 (1971).

    Article  Google Scholar 

  31. E. F. Skelton, D. U. Gubser, S. C. Yu, I. L. Spain, R. M. Waterstrat, A. R. Sweedler, L. R. Newkirk, and S. A. Valencia, “Effects of Pressure on the Structural and Superconducting Properties of Nb3As, Nb3Ge, and Nb3Si”, to be published.

    Google Scholar 

  32. R. M. Waterstrat, K. Yvon, H. D. Flack, and E. Parthe, Acta Cryst. B31, 2765 (1975).

    Article  Google Scholar 

  33. J-M. Leger and H. T. Hall, J. Less-Common Metals 34, 17 (1974).

    Article  Google Scholar 

  34. T. L. Francavilla, A. W. Webb, and R. A. Meussner, in “Rept. NRL Prog.” (December 1976), p. 1.

    Google Scholar 

  35. T. L. Francavilla, A. W. Webb, and R. A. Meussner, Bull. Am. Phys. Soc. 21, 291 (1976).

    Google Scholar 

  36. R. D. Blaugher, in Proceedings Applied Superconductivity Conference Stanford, California (1976).

    Google Scholar 

  37. L. F. Vereshchagin, E. M. Savitskii, V. V. Evdokimova, V. I. Novokshenov, and V. G. Pemrenko, JEPT Lett. 24, 218 (1976).

    Google Scholar 

  38. G. Otto, O. Y. Reece, and U. Roy, Appl. Phys. Lett. 18, 418 (1971).

    Article  Google Scholar 

  39. J. F. Cannon, D. L. Robertson, H. T. Hall, and A. C. Lawson, J. Phys. Chem. Solids 35, 1181 (1974).

    Article  Google Scholar 

  40. L. F. Vereshchagin, V. V. Evdokimova, and V. I. Novokshonov, Soviet Phys.-Solid State 13, 2074 (1972).

    Google Scholar 

  41. M. C. Krupka, A. L. Giorgi, N. H. Krikorian, and E. G. Szklarz, J. Less-Common Metals 17, 91 (1969).

    Article  Google Scholar 

  42. M. C. Krupka, J. Less-Common Metals 20, 135 (1970).

    Article  Google Scholar 

  43. M. C. Krupka, A. L. Giorgi, N. H. Krikorian, and E. G. Szklarz, J. Less-Common Metals 19, 113 (1969).

    Article  Google Scholar 

  44. P. C. Donohue and P. E. Bierstedt, Inorganic Chem. 8, 2690 (1969).

    Article  Google Scholar 

  45. H. Katzman, T. Donohue, W. F. Libby, and H. L. Luo, J. Phys. Chem. Solids 30, 2794 (1969).

    Article  Google Scholar 

  46. H. Katzman, T. Donohue, W. F. Libby, H. L. Luo, and J. G. Huber, J. Phys. Chem. Solids 30, 1609 (1969).

    Article  Google Scholar 

  47. L. G. Khvostantsev, S. V. Popova, and G. N. Stipanov, Soviet Phys.-Doklady 17, 1028 (1973); (Doklady Akademii Nauk SSSR 206, 1342 (1972).

    Google Scholar 

  48. S. Block and G. Piermarini, Phys. Today (September 1976), p. 44.

    Google Scholar 

  49. H. K. Mao and P. M. Bell, Science 191, 851 (1976).

    Article  Google Scholar 

  50. L. Ming and W. A. Bassett, Rev. Sci. Instrum. 45, 1115 (1974).

    Article  Google Scholar 

  51. C. M. Sung, Rev. Sci. Instrum. 47, 1343 (1976).

    Article  Google Scholar 

  52. G. J. Piermarini, S. Block, and J. D. Barnett, J. Appl. Phys. 44, 5377 (1973).

    Article  Google Scholar 

  53. G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman, J. Appl. Phys. 46, 2774 (1975).

    Article  Google Scholar 

  54. A. W. Webb, D. U. Gubser, and L. C. Towle, Rev. Sci. Instrum. 47, 59 (1976).

    Article  Google Scholar 

  55. E. F. Skelton, I. L. Spain, S. C. Yu, C. Y. Liu, and E. R. Carpenter, Rev. Sci. Instrum. 48, 879 (1977).

    Article  Google Scholar 

  56. F. J. Rachford, E. F. Skelton, and I. L. Spain, to be published.

    Google Scholar 

  57. E. F. Skelton, C. Y. Liu, and I. L. Spain, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skelton, E.F., Webb, A.W. (1979). Future Trends in High Pressure — High Temperature Synthesis of Superconducting Materials. In: Timmerhaus, K.D., Barber, M.S. (eds) High-Pressure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7470-1_242

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7470-1_242

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7472-5

  • Online ISBN: 978-1-4684-7470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics