Advertisement

Future Trends in High Pressure — High Temperature Synthesis of Superconducting Materials

  • E. F. Skelton
  • A. W. Webb

Abstract

Over the past ten years, more than 150 studies have been published in the field of high pressure synthesis spanning an even wider range of materials. In this paper we have chosen to restrict our discussion to those high pressure-high temperature (HP-HT) synthesis efforts which are specifically addressed to superconducting materials. In an effort to suggest future trends, we have reviewed published work in this area over the past decade. Recent efforts to synthesize new superconductors at NRL are also summarized. Some of the shortcomings of current synthesis efforts are delineated, followed by suggestions to improve future work in this field.

Keywords

Binary Compound Superconducting Property Pressure Cavity Superconducting Material High Pressure Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. W. Webb, T. L. Francavilla, R. A. Meussner, and R. M. Waterstrat, in Proceedings 6th AIRAPT Intern. High Pressure Conference Plenum Press, New York (1978).Google Scholar
  2. 2.
    J. R. Gavaler, Appl. Phys. Lett. 23, 480 (1973).CrossRefGoogle Scholar
  3. 3.
    L. R. Testardi, J. H. Wernick, and W. A. Royer, Solid State Comm. 15, 49 (1974).CrossRefGoogle Scholar
  4. 4.
    J. B. Goodenough, J. A. Kafalas, and J. M. Longo, in Preparative Methods in Solid State Chemistry Academic Press, New York (1972), p. 1.Google Scholar
  5. 5.
    T. F. Smith, in AIP Conference Proceedings Vol. 4 (1972), p. 293.CrossRefGoogle Scholar
  6. 6.
    T. F. Smith, J. Low Temp. Phys. 6, 171 (1972).CrossRefGoogle Scholar
  7. 7.
    P. C. Donohue and H. S. Young, J. Solid State Chem. 1, 143 (1970).CrossRefGoogle Scholar
  8. 8.
    J. M. Vandenberg and B. T. Matthias, Mat. Res. Bull. 9, 1085 (1974).CrossRefGoogle Scholar
  9. 9.
    P. C. Donohue, Inorganic Chem. 9, 335 (1970).CrossRefGoogle Scholar
  10. 10.
    L. G. Boiko and S. V. Popova, ZhETF Pis. Red. 12, 101 (1970).Google Scholar
  11. 11.
    A. C. Lawson, J. F. Cannon, D. L. Robertson, and H. T. Hall, J. Less-Common Metals 32, 173 (1973).CrossRefGoogle Scholar
  12. 12.
    S. V. Popova, L. N. Fomicheva, and N. I. Pal’nikov, ZhETF Pis. Red. 20, 648 (1974) (JEPT Lett. 20, 298 (1974)).Google Scholar
  13. 13.
    W. L. McMillan, Phys. Rev. 167 331 (1968).Google Scholar
  14. 14.
    P. B. Allen and R. C. Dynes, Phys. Rev. 12, 905 (1975).CrossRefGoogle Scholar
  15. 15.
    L. R. Testardi, in Physical Acoustics W. P. Mason and R. N. Thurston, ed., Academic Press, New York (1973), p. 193.Google Scholar
  16. 16.
    M. Weger and I. B. Goldberg, in Solid State Physics Vol. 28, F. Seitz and D. Turnbull, ed., Academic Press, New York (1973), p 1.Google Scholar
  17. 17.
    R. A. Hein, in The Science and Technology of Superconductivity W. D. Gregory, W. N. Mathews, Jr., and E. A. Edelsack, ed., Plenum Press, New York (1973), p. 333.Google Scholar
  18. 18.
    Y. A. Izyumov and Z. Z. Kurmaev, Soviet Phys.-Usp. 17, 356 (1974); (Usp. Fiz. Nauk 113, 193 ).Google Scholar
  19. 19.
    D. Dew-Hughes, Cryogenics 15, 435 (1975).CrossRefGoogle Scholar
  20. 20.
    L. Gold, Phys. Stat. Sol. 4, 261 (1964).CrossRefGoogle Scholar
  21. 21.
    D. Dew-Hughes and V. K. Rivlin, Nature 250 435 (1975).Google Scholar
  22. 22.
    B. M. Matthias, Phys. Today 24, 23 (1971).CrossRefGoogle Scholar
  23. 23.
    S. Geller, Acta Cryst. 9, 885 (1956).CrossRefGoogle Scholar
  24. 24.
    G. R. Johnson and D. H. Douglas, J. Low Temp. Phys. 14, 565 (1974).CrossRefGoogle Scholar
  25. 25.
    L. D. Hartsough, J. Phys. Chem. Solids 35, 1691 (1974).CrossRefGoogle Scholar
  26. 26.
    D. Dew-Hughes and V. G. Rivlin, Nature 250 723 (1974).Google Scholar
  27. 27.
    H. T. Hall, in Progress in Inorganic Chem. Vol. 7, F. A. Cotton, ed., Interscience Publishers, New York (1966), p. 1.Google Scholar
  28. 28.
    J-M. Leger and H. T. Hall, J. Less-Common Metals 32, 181 (1973).CrossRefGoogle Scholar
  29. 29.
    V. M. Pan, V. P. Alekseevskii, A. G. Popov, Y. I. Beletskii, L. M. Yupko, and V. V. Yarosh, ZhETF Pis. Red. 21, 494 (L975); (JETP Lett. 21, 228 (1975)).Google Scholar
  30. 30.
    G. W. Webb, L. J. Vieland, R. E. Miller, and A. Wicklund, Solid State Comm. 9, 1769 (1971).CrossRefGoogle Scholar
  31. 31.
    E. F. Skelton, D. U. Gubser, S. C. Yu, I. L. Spain, R. M. Waterstrat, A. R. Sweedler, L. R. Newkirk, and S. A. Valencia, “Effects of Pressure on the Structural and Superconducting Properties of Nb3As, Nb3Ge, and Nb3Si”, to be published.Google Scholar
  32. 32.
    R. M. Waterstrat, K. Yvon, H. D. Flack, and E. Parthe, Acta Cryst. B31, 2765 (1975).CrossRefGoogle Scholar
  33. 33.
    J-M. Leger and H. T. Hall, J. Less-Common Metals 34, 17 (1974).CrossRefGoogle Scholar
  34. 34.
    T. L. Francavilla, A. W. Webb, and R. A. Meussner, in “Rept. NRL Prog.” (December 1976), p. 1.Google Scholar
  35. 35.
    T. L. Francavilla, A. W. Webb, and R. A. Meussner, Bull. Am. Phys. Soc. 21, 291 (1976).Google Scholar
  36. 36.
    R. D. Blaugher, in Proceedings Applied Superconductivity Conference Stanford, California (1976).Google Scholar
  37. 37.
    L. F. Vereshchagin, E. M. Savitskii, V. V. Evdokimova, V. I. Novokshenov, and V. G. Pemrenko, JEPT Lett. 24, 218 (1976).Google Scholar
  38. 38.
    G. Otto, O. Y. Reece, and U. Roy, Appl. Phys. Lett. 18, 418 (1971).CrossRefGoogle Scholar
  39. 39.
    J. F. Cannon, D. L. Robertson, H. T. Hall, and A. C. Lawson, J. Phys. Chem. Solids 35, 1181 (1974).CrossRefGoogle Scholar
  40. 40.
    L. F. Vereshchagin, V. V. Evdokimova, and V. I. Novokshonov, Soviet Phys.-Solid State 13, 2074 (1972).Google Scholar
  41. 41.
    M. C. Krupka, A. L. Giorgi, N. H. Krikorian, and E. G. Szklarz, J. Less-Common Metals 17, 91 (1969).CrossRefGoogle Scholar
  42. 42.
    M. C. Krupka, J. Less-Common Metals 20, 135 (1970).CrossRefGoogle Scholar
  43. 43.
    M. C. Krupka, A. L. Giorgi, N. H. Krikorian, and E. G. Szklarz, J. Less-Common Metals 19, 113 (1969).CrossRefGoogle Scholar
  44. 44.
    P. C. Donohue and P. E. Bierstedt, Inorganic Chem. 8, 2690 (1969).CrossRefGoogle Scholar
  45. 45.
    H. Katzman, T. Donohue, W. F. Libby, and H. L. Luo, J. Phys. Chem. Solids 30, 2794 (1969).CrossRefGoogle Scholar
  46. 46.
    H. Katzman, T. Donohue, W. F. Libby, H. L. Luo, and J. G. Huber, J. Phys. Chem. Solids 30, 1609 (1969).CrossRefGoogle Scholar
  47. 47.
    L. G. Khvostantsev, S. V. Popova, and G. N. Stipanov, Soviet Phys.-Doklady 17, 1028 (1973); (Doklady Akademii Nauk SSSR 206, 1342 (1972).Google Scholar
  48. 48.
    S. Block and G. Piermarini, Phys. Today (September 1976), p. 44.Google Scholar
  49. 49.
    H. K. Mao and P. M. Bell, Science 191, 851 (1976).CrossRefGoogle Scholar
  50. 50.
    L. Ming and W. A. Bassett, Rev. Sci. Instrum. 45, 1115 (1974).CrossRefGoogle Scholar
  51. 51.
    C. M. Sung, Rev. Sci. Instrum. 47, 1343 (1976).CrossRefGoogle Scholar
  52. 52.
    G. J. Piermarini, S. Block, and J. D. Barnett, J. Appl. Phys. 44, 5377 (1973).CrossRefGoogle Scholar
  53. 53.
    G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman, J. Appl. Phys. 46, 2774 (1975).CrossRefGoogle Scholar
  54. 54.
    A. W. Webb, D. U. Gubser, and L. C. Towle, Rev. Sci. Instrum. 47, 59 (1976).CrossRefGoogle Scholar
  55. 55.
    E. F. Skelton, I. L. Spain, S. C. Yu, C. Y. Liu, and E. R. Carpenter, Rev. Sci. Instrum. 48, 879 (1977).CrossRefGoogle Scholar
  56. 56.
    F. J. Rachford, E. F. Skelton, and I. L. Spain, to be published.Google Scholar
  57. 57.
    E. F. Skelton, C. Y. Liu, and I. L. Spain, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • E. F. Skelton
    • 1
  • A. W. Webb
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations