Compression-Shear Waves in Arkansas Novaculite

  • L. R. Koller
  • G. R. Fowles


By far, the majority of experiments which are conducted to measure material properties at high stresses through the mechanism of shock waves involve the production of plane longitudinal type disturbances. However, these conventional techniques are insufficient to calculate the complete equation of state; they yield only those volume-energy states reachable through longitudinal shock waves, namely the Hugoniot relation, PH(V,E). Temperatures on this curve cannot presently be measured but must be calculated by assuming values of other thermodynamic parameters such as the Grüneisen parameter and the specific heat [1,2]. Acoustic wave velocities at high pressure must also be calculated indirectly under similar conditions. Perhaps most significantly, however, these type of experiments provide no simultaneous knowledge of shear wave speeds in a high pressure environment even though these velocities provide some of the most direct knowledge of the earth’s interior.


Shear Wave Wedge Angle Wave Arrival Shear Wave Speed Projectile Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Knopoff, J. N. Shapiro, J. Geophys. Res. 74, 1439 (1969).CrossRefGoogle Scholar
  2. 2.
    J. N. Shapiro, L. Knopoff, J. Geophys. Res. 74, 1435 (1969).CrossRefGoogle Scholar
  3. 3.
    K. A. Rakhmatulin, Appl. Math. Mech. (PMM) 22, 1079 (1958).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    N. Critescu, Appl. Math. Mech. (PMM) 23, 1605 (1959).CrossRefGoogle Scholar
  5. 5.
    H. H. Bleich, I. Nelson, J. Appl. Mech. 33, 149 (1966).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    T. C. T. Ning, and N. Nan, J. Appl. Mech. 36, 1389 (1969).Google Scholar
  7. 7.
    S. Kalisky, W. K. Nowacki, and Wlodorczyk, Proc. Vib. Probl. 8, 175 (1967).Google Scholar
  8. 8.
    S. Kalisky, W. K. Nowacki, and Wlodorczyk, Proc. Vib. Probl. 8, 293 (1967).Google Scholar
  9. 9.
    R. P. Goel, and L. E. Malvern, J. Appl. Mech. 38, 895 (1971).CrossRefGoogle Scholar
  10. 10.
    A. S. Abou-Sayed, M. Sci. Thesis, Brown University, Providence, Rhode Island (1972).Google Scholar
  11. 11.
    A. S. Abou-Sayed, and R. J. Clifton, J. Appl. Phys. 47, 1762 (1976).CrossRefGoogle Scholar
  12. 12.
    A. S. Abou-Sayed, R. J. Clifton, and L. Hermann, Exp. Mech. 16, 127 (1976).CrossRefGoogle Scholar
  13. 13.
    C. Young, and O. Dubgnon, paper presented at Spring SESA meeting, Chicago, Illinois, May 1975.Google Scholar
  14. 14.
    Y. M. Gupta, Appl. Phys. Lett. 29, 694 (1976).CrossRefGoogle Scholar
  15. 15.
    P. Lorrain, D. R. Corson, Electromagnetic Fields and Waves, W. H. Freeman and Company, San Francisco, California (1962).Google Scholar
  16. 16.
    L. M. Barker, and R. E. Hollenbach, J. Appl. Phys. 41, 4208 (1970).CrossRefGoogle Scholar
  17. 17.
    N. I. Christensen, J. Geophys. Res. 71, 3549 (1966).CrossRefGoogle Scholar
  18. 18.
    F. Press, in Handbook of Physical Constants (Revised Edition), S. P. Clark, ed., Geological Society of America Memoir 97 (1966), p. 195.CrossRefGoogle Scholar
  19. 19.
    H. Kolsky, Stress Waves in Solids, Dover Publications Inc., New York (1952), p. 31.Google Scholar
  20. 20.
    W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered Media, McGraw-Hill Book Company, New York (1957), p. 74.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • L. R. Koller
    • 1
  • G. R. Fowles
    • 1
  1. 1.Washington State UniversityPullmanUSA

Personalised recommendations