Absorption Spectroscopy in Solids under Shock Compression

  • T. Goto
  • G. R. Rossman
  • T. J. Ahrens


Experimental techniques that allow measurement of the optical absorption spectra of solids during the short time interval that they can be compressed dynamically offer the opportunity to supplement the more familiar equation of state data, which are usually reported in the form of a Hugoniot curve [1], with knowledge of the transition element (cation) coordination environment, charge transfer energy spectrum, and population of electronic states at high (dynamic) pressures. In principle, shock pressures in excess of 100 GPa (1 Mbar) can be obtained; moreover, the absolute pressures are known for any given experiment to ~ 1%. The spectral range,however, is limited to about 350 to 700 nm by the response of photographic film. Thus spectroscopy under dynamic compression offers both advantages and disadvantages with respect to the gathering of spectral data in static high-pressure equipment [2,3]. In addition to the application of spectroscopic data in obtaining a fundamental understanding of the solid-state physics and chemistry of solids, high-pressure optical data have two important applications to the physics of the earth’s interior, particularly with regard to the environment of the lower mantle of the earth. In the pressure regime above ~30 GPa, a major objective of both contemporary static [4,5] and dynamic [6,7] experimentation is the discovery and characterization of the crystal structures appropriate for the silicates and oxides of the earth’s lower mantle. Because transition element absorption spectra are highly sensitive to the coordination number and geometry of the cation sites in oxides and silicates, the present techniques appear promising with regard to distinguishing among the different possible high-pressure phases [8]. The second geophysical application of spectral data for candidate mantle minerals and their crystal-chemical analogs is the determination of the dependence of photon opacity and index of refraction on wavelength, pressure, and temperature. The opacity and, to a lesser extent, the index of refraction (a subject not addressed by the present paper) control the radiative transport of heat in the temperature regime of the earth’s lower mantle (⪞ 3000 K) [9–12].


Shock Front Optical Absorption Spectrum Shock Compression Shock Pressure Streak Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Al’tshuler, Soviet Phys. USPEkHI 8, 52 (1965).CrossRefGoogle Scholar
  2. 2.
    H. G. Drickamer and C. W. Frank, Electronic Transitions and the High Pressure Chemistry and Physics of Solids, Chapman and Hall, London (1973).CrossRefGoogle Scholar
  3. 3.
    H. K. Mao and P. M. Bell, Carnegie Institute of Washington Year Book 73, 502 (1974).Google Scholar
  4. 4.
    K. Suito, in High-Pressure Research: Applications in Geophysics, M. H. Manghnani and S. Akimoto, eds., Academic Press, New York (1977).Google Scholar
  5. 6.
    G. V. Simakov, M. N. Pavlovskiy, N. G. Kalashnikov, and R. F. Trunin, Izv. Acad. Sci. USSR Phys. Solid Earth (Engl. Transl.) 8, 388 (1974).Google Scholar
  6. 7.
    I. Jackson, T. J. Ahrens, and H. A. Richeson, EOS Trans. Amer. Geophys. Union 58, 518 (1977).Google Scholar
  7. 8.
    E. S. Gaffney, Phys. Earth Planet. Interiors 6, 385 (1972).Google Scholar
  8. 9.
    D. Tozer, Phys. and Chem. of the Earth 3, 414(1959).Google Scholar
  9. 10.
    G. D. Pitt and D. C. Tozer, Phys. Earth Planet. Interiors 2, 189 (1970).Google Scholar
  10. 11.
    Y. Fukao, H. Mizutani, and S. Uyeda, Phys. Earth Planet. Interiors 1, 57 (1968).Google Scholar
  11. 12.
    T. J. Shakland, U. Nitsam, and A. G. Duba, EOS Trans. Amer. Geophys. Union 58, 492 (1977).Google Scholar
  12. 13.
    E. S. Gaffney and T. J. Ahrens, J. Geophys. Res. 78, 5942 (1973).CrossRefGoogle Scholar
  13. 14.
    S. Claesson and L. Lindquist, Arkiv kemi 11, 535 (1957).Google Scholar
  14. 15.
    R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, in High Velocity Impact Phenomena, R. Kinslow, ed., Academic Press, New York (1970).Google Scholar
  15. 16.
    R. G. McQueen and S. P. Marsh (unpublished data) compiled in Handbook of Physical Constants, S. P. Clark, Jr., ed., Geological Society of America, New York (1966).Google Scholar
  16. 17.
    R. A. Graham and W. P. Brooks, J. Phys. Chem. Solids 32, 2311 (1971).CrossRefGoogle Scholar
  17. 18.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 766 (1954).CrossRefGoogle Scholar
  18. 19.
    S. Sugano and Y. Tanabe, J. Phys. Soc. Japan 13, 880 (1958).CrossRefGoogle Scholar
  19. 20.
    D. R. Stephens and H. G. Drickamer, J. Chem. Phys. 35, 427 (1961) .Google Scholar
  20. 21.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 753 (1954).CrossRefGoogle Scholar
  21. 22.
    H. V. Hart and H. G. Drickamer, J. Chem. Phys7 43, 2265 (1965).Google Scholar
  22. 23.
    D. S. McClure, Solid State Phys. 9, 399 (1959).CrossRefGoogle Scholar
  23. 24.
    S. Minomura and H. G. Drickamer, J. Chem. Phys. 35, 903 (1961).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • T. Goto
    • 1
  • G. R. Rossman
    • 1
  • T. J. Ahrens
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations