A New Allotropic Phase of Cerium Above 122 Kbar

  • S. Endo
  • N. Fujioka
  • H. Sasaki


It is well known that cerium metal appears in many different allotropic phases. The existence of two fcc phases, γ and α, has been the subject of extensive study particularly relative to the behavior of the 4f electrons in this transition. At pressures higher than 50 kbar, α-Ce transforms to a superconducting α′ phase [1]. Conflicting results have been reported on the crystal structure of α′-Ce [2–6]. During the course of an x-ray diffraction study to clarify this Situation, we found another allotropic phase around 120 kbar pressure. This paper deals with the crystal structure of the new phase and the resistance change associated with the transition from the α′ phase to the new phase.


Tetragonal Phase Resistance Measurement Unit Cell Dimension Bridgman Anvil Atomic Scattering Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Wittig, Phys. Rev. Letters 21, 1250 (1968).CrossRefGoogle Scholar
  2. 2.
    D. B. McWhan, Phys. Rev. Bl, 2826 (1970).Google Scholar
  3. 3.
    F. H. Ellinger and W. H. Zachariasen, Phys. Rev. Letters 12, 773 (1974) Google Scholar
  4. W. H. Zachariasen and F. H. Ellinger, Acta Cryst. A33, 155 (1977).CrossRefGoogle Scholar
  5. P. H. Schaufelberger and H. Merx, in Proc. 4th Intern. High Pressure Conference, Kyoto, Japan (1974), p. 222; also High Temp. - High Press. 1, 55 (1975).Google Scholar
  6. 5.
    P. H. Schaufelberger, J. Appl. Phys. 47, 2364 (1976).CrossRefGoogle Scholar
  7. 6.
    W. H. Zachariasen, J. Appl. Phys. 48, 1391 (1977).CrossRefGoogle Scholar
  8. 7.
    S. Endo and T. Mitsui, in Proc. 4th Intern. High Pressure Conference, Kyoto, Japan (1974), p. 824; also Rev. Sei. Instr. 47, 1275 (1976).Google Scholar
  9. 8.
    S. Endo and H. Sasaki, to be published.Google Scholar
  10. 9.
    D. L. Decker, J. Appl. Phys. 42, 3239 (1971).CrossRefGoogle Scholar
  11. 10.
    N. Kawai, H. Sakamoto, Y. Notsu and A.Onodera, Proc. Japan Acad. 51, 623 (1975).Google Scholar
  12. 11.
    N. Kawai and S. Endo, Rev. Sei. Instr. 41, 1178 (1970).CrossRefGoogle Scholar
  13. 12.
    G. J. Piermarini and S. Block, Rev. Sei. Instr. 46, 973 (1975).CrossRefGoogle Scholar
  14. 13.
    S. Akimoto, T. Yagi, Y. Ida, K. Inoue and Y. Sato, High Temp. - High Press. 7, 287 (1975).Google Scholar
  15. 14.
    S. Endo, H. Sasaki and T. Mitsui, J. Phys. Soc. Japan 42, 882 (1977).CrossRefGoogle Scholar
  16. 15.
    J. A. Ibers, International Tables for X-ray Christallography, Vol. 3, C. H. Macgillavry and G. D. Rieck, eds., Kynoch Press, Birmingham, England (1962), p. 201.Google Scholar
  17. 16.
    R. A. Stager and H. G. Drickamer, Phys. Rev. 133, A830 (1964).CrossRefGoogle Scholar
  18. 17.
    A. Jayaraman and R. C. Sherwood, Phys. Rev. 134, A691 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • S. Endo
    • 1
  • N. Fujioka
    • 1
  • H. Sasaki
    • 2
  1. 1.Osaka UniversityToyonakaJapan
  2. 2.Hokkaido UniversitySapporoJapan

Personalised recommendations