Effects of Hydrostatic Extrusion on the Thermal Properties of Amorphous Polymers

  • T. Ariyama
  • T. Nakayama
  • N. Inoue


The feasibility of hydrostatic extrusion has been studied for various polymers: including polyimide, polysulfone, high-density polyethylene, low-density polyethylene, and polystyrene [1,2]. Recently, the hydrostatic extrusion of brittle amorphous polymers, poly(methyl methacrylate) (PMMA) and high-impact polystyrene (HIPS), was successfully performed by sheathing these polymers with rubber at ambient temperature, without back pressure [3,4]. Nakayama and Inoue [3] reported that the elongation of the PMMA as well as HIPS extrudates, when tested in tension under atmospheric pressure, exhibited a marked increase, and that this behavior was due to the rearrangement of the molecular chains in the direction of extrusion.


Methyl Methacrylate Molecular Chain Amorphous Polymer Hydrostatic Extrusion Extrusion Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Sauer and K. D. Pae, in Proc. of 4th Intern. Conference on High Pressure, Kyoto, Japan (1974), p. 17.Google Scholar
  2. 2.
    J. A. Sauer and K. D. Pae, Colloid and Polymer Sci. 252, 680 (1974).CrossRefGoogle Scholar
  3. 3.
    T. Nakayama and N. Inoue, in Proc. of 2nd Intern. Conference on Mechanical Behavior of Materials, Boston, Massachusetts (1976), p. 1305.Google Scholar
  4. 4.
    T. Nakayama and N. Inoue, Trans. JSME 42, 3126 (1976).CrossRefGoogle Scholar
  5. 5.
    J. J. Keavney and E. C. Eberlin, J. Appl. Polymer Sci. 3, 47 (1960).CrossRefGoogle Scholar
  6. 6.
    T. Ariyama, T. Nakayama, and N. Inoue, “Thermal Properties of Hydrostatically extruded Amorphous Polymers,” to be published.Google Scholar
  7. 7.
    W. E. Goode, F. H. Owens, R. P. Fellmann, W. H. Snyder, and J. E. Moore, J. Polymer Sci. 46, 317 (1960).CrossRefGoogle Scholar
  8. 8.
    T. G. Fox, B. S. Garrett, W. E. Goode, S. Gratch, J. E. Kincaid, A. Spell, and J. D. Sroupe, J. Am. Chem. Sci. 80, 1768 (1958).CrossRefGoogle Scholar
  9. 9.
    S. Kranse and N. Roman, J. Polymer Sci. A 3, 1631 (1965).Google Scholar
  10. 10.
    E. V. Thompson, J. Polymer Sci. A-2 4, 199-(1966).Google Scholar
  11. 11.
    J. C. Wittmann and A. J. Kovacs, J. Polymer Sci. C 16, 4443 (1969).Google Scholar
  12. 12.
    G. L. Taylor and S. Davison, J. Polymer Sci. B 6, 699 (1968).CrossRefGoogle Scholar
  13. 13.
    S. Igarashi and H. Kambe, Bull. Chem. Soc. Japan 37, 176 (1964).CrossRefGoogle Scholar
  14. 14.
    K. Imada, T. Yamamoto, K. Shigematsu, ând M. Takayanagi, J. Materials Sci. 6, 537 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • T. Ariyama
    • 1
  • T. Nakayama
    • 1
  • N. Inoue
    • 1
  1. 1.Science University of TokyoTokyoJapan

Personalised recommendations