Skip to main content

Status of Equation of State of Solids

  • Chapter
High-Pressure Science and Technology

Abstract

Equation of State measurements, namely pressure-volume-temperature measurements enables one not only to evaluate thermodynamic parameters but also to get some insight into the nature of atomic and macroscopic theories. The measurement of volume as a function of pressure can be accomplished as follows: Length change measurement techniques; piston volume displacement techniques ultrasonic techniques: combined length change and ultrasonic transit time measurement; Brillouin scattering techniques; and shock wave techniques. Each technique has its advantages and serious limitations. A brief discussion of each technique is given elsewhere [1]. The precision and errors associated with these techniques are given in Table I.

Invited paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Ruoff and L. C. Chhabildas, Cornell University, MSC Report No. 2853 (unpublished).

    Google Scholar 

  2. A. O. Urvas, D. L. Losee and R. O. Simmons, J. Phys. Chem. Solids 28, 2269 (1967).

    Article  Google Scholar 

  3. D. N. Batchelder, D. L. Losee and R. O. Simmons, Phys. Rev. 162, 767 (1967).

    Article  Google Scholar 

  4. H. J. Coufal, R. Veith, P. Korpiun and E. Luscher, Phys. Stat. Sol. 38 K127 (1970); also J. Appl. Phys. 41, 5082 (1970).

    Article  Google Scholar 

  5. P. Korpiun, W. Albrecht, T. Muller and E. Luscher, Phys. Letters 48A, 253 (1974).

    Google Scholar 

  6. J. Skalyo, V. J. Minkiewicz, G. Shirane and W. B. Daniels, Phys. Rev. B6, 4766 (1972).

    Article  Google Scholar 

  7. J. W. Stewart, J. Phys. Chem. Solids 29, 641 (1968).

    Article  Google Scholar 

  8. C. A. Swenson and M. S. Anderson, AIP Conf. Proc. Vol. 3, (1972), p. 105.

    Article  Google Scholar 

  9. R. Q. Fugate and C. A. Swenson, J. Low Temp. Phys. 10, 317 (1973).

    Article  Google Scholar 

  10. M. S. Anderson, R. Q. Fugate and C. A. Swenson, J. Low Temp. Phys. 10, 347 (1973).

    Google Scholar 

  11. M. S. Anderson and C. A. Swenson, J. Phys. Chem. Solids 36, 145 (1975).

    Article  Google Scholar 

  12. S. N. Vaidya, I. G. Getting and G. C. Kennedy, J. Phys. Chem. Solids 32, 2545 (1971).

    Article  Google Scholar 

  13. P. S. Ho and A. L. Ruoff, J. Phys. Chem. Solids 29, 2101 (1968).

    Article  Google Scholar 

  14. P. A. Smith and C. S. Smith, J. Phys. Chem. Solids 26, 279 (1965).

    Article  Google Scholar 

  15. R. H. Martinson, Phys. Rev. 178, 902 (1969).

    Article  Google Scholar 

  16. P. W. Bridgman, Proc. Am. Acad. Arts. Sei. 76, 71 (1940).

    Article  Google Scholar 

  17. C. A. Swenson, J. Phys. Chem. Solids 27, 33 (1960).

    Article  Google Scholar 

  18. R. I. Beecroft and C. A. Swenson, J. Phys. Chem. Solids 18, 327 (1961).

    Google Scholar 

  19. C. E. Monfort and C. A. Swenson, J. Phys. Chem. Solids 26, 291 (1965).

    Article  Google Scholar 

  20. J. P. Day and A. L. Ruoff, Phys. Stat. Sol. A25, 205 (1974).

    Article  Google Scholar 

  21. H. C. Nash and C. S. Smith, J. Phys. Chem. Solids 9, 113 (1959).

    Article  Google Scholar 

  22. T. Slotwinski and J. Trivisonno, J. Phys. Chem. Solids 30, 1276 (1969).

    Article  Google Scholar 

  23. E. J. Gutman and J. Trivisonno, J. Phys. Chem. Solids 29, 805 (1967).

    Article  Google Scholar 

  24. F. J. Kollarits and J. Trivisonno, J. Phys. Chem. Solids 29, 2133 (1968).

    Article  Google Scholar 

  25. W. B. Daniels, Phys. Rev. 119, 1246 (1960).

    Article  Google Scholar 

  26. G. Fritsch, M. Nehmann, P. Korpiun, E. Luscher, Phys. Stat. Sol. (a)19, 555 (1973).

    Google Scholar 

  27. G. Fritsch and H. Bube, Phys. Stat. Sol. (a)30, 471 (1975).

    Google Scholar 

  28. M. S. Anderson, E. J. Gutman, J. R. Packard and C. A. Swenson, J. Phys. Chem. Solids 30, 1587 (1968).

    Article  Google Scholar 

  29. R. Glinski and J. M. Templeton, J. Low Temp. Phys. 1, 223 (1969).

    Article  Google Scholar 

  30. G. M. Beardsley and J. E. Schirber, J. Low Temp. Phys. 8, 421 (1972).

    Article  Google Scholar 

  31. G. R. Barsh and Z. P. Chang, in NBS Special Publication 326, E. C. Lloyd, ed., Govt. Print. Off., Washington, D.C. (1971), p. 173.

    Google Scholar 

  32. L. C. Chhabildas and A. L. Ruoff, J. Appl. Phys. 47, 4182 (1976).

    Article  Google Scholar 

  33. C. H. Whitfield, E. M. Brody and W. A. Bassett, Rev. Sei. Instr. 47, 942 (1976).

    Article  Google Scholar 

  34. W. J. Carter, High Temp-High Press. 5, 313 (1973).

    Google Scholar 

  35. M. P. Tosi, Solid State Physics 16, 1 (1964).

    Google Scholar 

  36. R. W. Roberts and C. S. Smith, J. Phys. Chem. Solids 31, 619 (1970), ibid., 31, 2397 (1970).

    Article  Google Scholar 

  37. K. O. McLean and C. S. Smith, J. Phys. Chem. Solids 33, 275 (1972); also, 33, 279 (1972).

    Article  Google Scholar 

  38. C. S. Smith and K. O. McLean, J. Phys. Chem. Solids 34, 1143 (1973).

    Article  Google Scholar 

  39. J. C. Jamieson, Science 139, 1291 (1963).

    Article  Google Scholar 

  40. D. L. Decker, J. Appl. Phys. 42, 3239 (1971).

    Article  Google Scholar 

  41. A. L. Ruoff and L. C. Chhabildas, J. Appl. Phys. 47, 4867 (1976).

    Article  Google Scholar 

  42. A. Onodero, N. Kawai, K. Ishizaki, and I. L. Spain, Solid State Commun. 14, 803 (1974).

    Article  Google Scholar 

  43. K. Y. Kim, L. C. Chhabildas and A. L. Ruoff, J. Appl. Phys. 47, 2862 (1976).

    Article  Google Scholar 

  44. S. N. Vaidya and G. C. Kennedy, J. Appl. Phys. 32, 961 (1971).

    Google Scholar 

  45. L. S. Ching, J. P. Day, and A. L. Ruoff, in J. Appl. Phys. 44, 1017 (1973).

    Google Scholar 

  46. M. Van Thiel, “Compendium of Shock Wave Data,” Lawrence Liver-more Laboratory, Report UCRL 50108.

    Google Scholar 

  47. S. Haussühl, Z. Phys. 159, 223 (1960).

    Article  Google Scholar 

  48. M. Ghafeleshbashi and K. M. Koliwad, J. Appl. Phys. 41, 4010 (1970).

    Article  Google Scholar 

  49. G. R. Barsch and Z. P. Chang, Phys. Status Solidi 19, 139 (1967).

    Article  Google Scholar 

  50. H. Spetzler, C. G. Sammis, and R. J. O’Connell, J. Phys. Chem. Solids 33, 1727 (1972).

    Article  Google Scholar 

  51. R. A. Bartel and D. E. Schuele, J. Phys. Chem. Solids 26, 537 (1965).

    Article  Google Scholar 

  52. J. N. Fritz, S. P. Marsh, W. J. Carter and R. G. McOueen in Accurate Characterization of the High Pressure Environment, NBS Special Publication 326, E. C. Lloyd, ed., U.S. Govt. Print. Off., Washington, D.C. (1971), p. 201.

    Google Scholar 

  53. F. D. Murnaghan, Finite Deformation of an Elastic Solid, Dover Publications, New York (1967).

    Google Scholar 

  54. F. Birch, Phys. Rev. 71, 809 (1947).

    Article  MATH  Google Scholar 

  55. F. Birch, J. Geophys. Res. 57, 227 (1952).

    Article  Google Scholar 

  56. A. Keane, Aust. J. Phys. 7, 322 (1954).

    Article  MATH  Google Scholar 

  57. R. Grover, I. C. Getting and G. C. Kennedy, Phys. Rev. B7, 567 (1973).

    Article  Google Scholar 

  58. J. R. MacDonald and D. R. Powell, J. Res. NBS 75A, 441 (1971).

    Google Scholar 

  59. O. L. Anderson, Phys. Earth Planet Inter. 1, 169 (1968).

    Article  Google Scholar 

  60. M. S. Anderson and C. A. Swenson, Phys. Rev. B15, 10, 5184 (1974).

    Article  Google Scholar 

  61. K. J. Dünn and A. L. Ruoff, Phys. Rev. B10, 2271 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruoff, A.L., Chhabildas, L.C. (1979). Status of Equation of State of Solids. In: Timmerhaus, K.D., Barber, M.S. (eds) High-Pressure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7470-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7470-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7472-5

  • Online ISBN: 978-1-4684-7470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics