Advertisement

Status of Equation of State of Solids

  • A. L. Ruoff
  • L. C. Chhabildas

Abstract

Equation of State measurements, namely pressure-volume-temperature measurements enables one not only to evaluate thermodynamic parameters but also to get some insight into the nature of atomic and macroscopic theories. The measurement of volume as a function of pressure can be accomplished as follows: Length change measurement techniques; piston volume displacement techniques ultrasonic techniques: combined length change and ultrasonic transit time measurement; Brillouin scattering techniques; and shock wave techniques. Each technique has its advantages and serious limitations. A brief discussion of each technique is given elsewhere [1]. The precision and errors associated with these techniques are given in Table I.

Keywords

Bulk Modulus Alkali Halide Pressure Derivative Ultrasonic Measurement Ultrasonic Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Ruoff and L. C. Chhabildas, Cornell University, MSC Report No. 2853 (unpublished).Google Scholar
  2. 2.
    A. O. Urvas, D. L. Losee and R. O. Simmons, J. Phys. Chem. Solids 28, 2269 (1967).CrossRefGoogle Scholar
  3. 3.
    D. N. Batchelder, D. L. Losee and R. O. Simmons, Phys. Rev. 162, 767 (1967).CrossRefGoogle Scholar
  4. 4.
    H. J. Coufal, R. Veith, P. Korpiun and E. Luscher, Phys. Stat. Sol. 38 K127 (1970); also J. Appl. Phys. 41, 5082 (1970).CrossRefGoogle Scholar
  5. 5.
    P. Korpiun, W. Albrecht, T. Muller and E. Luscher, Phys. Letters 48A, 253 (1974).Google Scholar
  6. 6.
    J. Skalyo, V. J. Minkiewicz, G. Shirane and W. B. Daniels, Phys. Rev. B6, 4766 (1972).CrossRefGoogle Scholar
  7. 7.
    J. W. Stewart, J. Phys. Chem. Solids 29, 641 (1968).CrossRefGoogle Scholar
  8. 8.
    C. A. Swenson and M. S. Anderson, AIP Conf. Proc. Vol. 3, (1972), p. 105.CrossRefGoogle Scholar
  9. 9.
    R. Q. Fugate and C. A. Swenson, J. Low Temp. Phys. 10, 317 (1973).CrossRefGoogle Scholar
  10. 10.
    M. S. Anderson, R. Q. Fugate and C. A. Swenson, J. Low Temp. Phys. 10, 347 (1973).Google Scholar
  11. 11.
    M. S. Anderson and C. A. Swenson, J. Phys. Chem. Solids 36, 145 (1975).CrossRefGoogle Scholar
  12. 12.
    S. N. Vaidya, I. G. Getting and G. C. Kennedy, J. Phys. Chem. Solids 32, 2545 (1971).CrossRefGoogle Scholar
  13. 13.
    P. S. Ho and A. L. Ruoff, J. Phys. Chem. Solids 29, 2101 (1968).CrossRefGoogle Scholar
  14. 14.
    P. A. Smith and C. S. Smith, J. Phys. Chem. Solids 26, 279 (1965).CrossRefGoogle Scholar
  15. 15.
    R. H. Martinson, Phys. Rev. 178, 902 (1969).CrossRefGoogle Scholar
  16. 16.
    P. W. Bridgman, Proc. Am. Acad. Arts. Sei. 76, 71 (1940).CrossRefGoogle Scholar
  17. 17.
    C. A. Swenson, J. Phys. Chem. Solids 27, 33 (1960).CrossRefGoogle Scholar
  18. 18.
    R. I. Beecroft and C. A. Swenson, J. Phys. Chem. Solids 18, 327 (1961).Google Scholar
  19. 19.
    C. E. Monfort and C. A. Swenson, J. Phys. Chem. Solids 26, 291 (1965).CrossRefGoogle Scholar
  20. 20.
    J. P. Day and A. L. Ruoff, Phys. Stat. Sol. A25, 205 (1974).CrossRefGoogle Scholar
  21. 21.
    H. C. Nash and C. S. Smith, J. Phys. Chem. Solids 9, 113 (1959).CrossRefGoogle Scholar
  22. 22.
    T. Slotwinski and J. Trivisonno, J. Phys. Chem. Solids 30, 1276 (1969).CrossRefGoogle Scholar
  23. 23.
    E. J. Gutman and J. Trivisonno, J. Phys. Chem. Solids 29, 805 (1967).CrossRefGoogle Scholar
  24. 24.
    F. J. Kollarits and J. Trivisonno, J. Phys. Chem. Solids 29, 2133 (1968).CrossRefGoogle Scholar
  25. 25.
    W. B. Daniels, Phys. Rev. 119, 1246 (1960).CrossRefGoogle Scholar
  26. 26.
    G. Fritsch, M. Nehmann, P. Korpiun, E. Luscher, Phys. Stat. Sol. (a)19, 555 (1973).Google Scholar
  27. 27.
    G. Fritsch and H. Bube, Phys. Stat. Sol. (a)30, 471 (1975).Google Scholar
  28. 28.
    M. S. Anderson, E. J. Gutman, J. R. Packard and C. A. Swenson, J. Phys. Chem. Solids 30, 1587 (1968).CrossRefGoogle Scholar
  29. 29.
    R. Glinski and J. M. Templeton, J. Low Temp. Phys. 1, 223 (1969).CrossRefGoogle Scholar
  30. 30.
    G. M. Beardsley and J. E. Schirber, J. Low Temp. Phys. 8, 421 (1972).CrossRefGoogle Scholar
  31. 31.
    G. R. Barsh and Z. P. Chang, in NBS Special Publication 326, E. C. Lloyd, ed., Govt. Print. Off., Washington, D.C. (1971), p. 173.Google Scholar
  32. 32.
    L. C. Chhabildas and A. L. Ruoff, J. Appl. Phys. 47, 4182 (1976).CrossRefGoogle Scholar
  33. 33.
    C. H. Whitfield, E. M. Brody and W. A. Bassett, Rev. Sei. Instr. 47, 942 (1976).CrossRefGoogle Scholar
  34. 34.
    W. J. Carter, High Temp-High Press. 5, 313 (1973).Google Scholar
  35. 35.
    M. P. Tosi, Solid State Physics 16, 1 (1964).Google Scholar
  36. 36.
    R. W. Roberts and C. S. Smith, J. Phys. Chem. Solids 31, 619 (1970), ibid., 31, 2397 (1970).CrossRefGoogle Scholar
  37. 37.
    K. O. McLean and C. S. Smith, J. Phys. Chem. Solids 33, 275 (1972); also, 33, 279 (1972).CrossRefGoogle Scholar
  38. 38.
    C. S. Smith and K. O. McLean, J. Phys. Chem. Solids 34, 1143 (1973).CrossRefGoogle Scholar
  39. 39.
    J. C. Jamieson, Science 139, 1291 (1963).CrossRefGoogle Scholar
  40. 40.
    D. L. Decker, J. Appl. Phys. 42, 3239 (1971).CrossRefGoogle Scholar
  41. 41.
    A. L. Ruoff and L. C. Chhabildas, J. Appl. Phys. 47, 4867 (1976).CrossRefGoogle Scholar
  42. 42.
    A. Onodero, N. Kawai, K. Ishizaki, and I. L. Spain, Solid State Commun. 14, 803 (1974).CrossRefGoogle Scholar
  43. 43.
    K. Y. Kim, L. C. Chhabildas and A. L. Ruoff, J. Appl. Phys. 47, 2862 (1976).CrossRefGoogle Scholar
  44. 44.
    S. N. Vaidya and G. C. Kennedy, J. Appl. Phys. 32, 961 (1971).Google Scholar
  45. 45.
    L. S. Ching, J. P. Day, and A. L. Ruoff, in J. Appl. Phys. 44, 1017 (1973).Google Scholar
  46. 46.
    M. Van Thiel, “Compendium of Shock Wave Data,” Lawrence Liver-more Laboratory, Report UCRL 50108.Google Scholar
  47. 47.
    S. Haussühl, Z. Phys. 159, 223 (1960).CrossRefGoogle Scholar
  48. 48.
    M. Ghafeleshbashi and K. M. Koliwad, J. Appl. Phys. 41, 4010 (1970).CrossRefGoogle Scholar
  49. 49.
    G. R. Barsch and Z. P. Chang, Phys. Status Solidi 19, 139 (1967).CrossRefGoogle Scholar
  50. 50.
    H. Spetzler, C. G. Sammis, and R. J. O’Connell, J. Phys. Chem. Solids 33, 1727 (1972).CrossRefGoogle Scholar
  51. 51.
    R. A. Bartel and D. E. Schuele, J. Phys. Chem. Solids 26, 537 (1965).CrossRefGoogle Scholar
  52. 52.
    J. N. Fritz, S. P. Marsh, W. J. Carter and R. G. McOueen in Accurate Characterization of the High Pressure Environment, NBS Special Publication 326, E. C. Lloyd, ed., U.S. Govt. Print. Off., Washington, D.C. (1971), p. 201.Google Scholar
  53. 53.
    F. D. Murnaghan, Finite Deformation of an Elastic Solid, Dover Publications, New York (1967).Google Scholar
  54. 54.
    F. Birch, Phys. Rev. 71, 809 (1947).CrossRefMATHGoogle Scholar
  55. 55.
    F. Birch, J. Geophys. Res. 57, 227 (1952).CrossRefGoogle Scholar
  56. 56.
    A. Keane, Aust. J. Phys. 7, 322 (1954).CrossRefMATHGoogle Scholar
  57. 57.
    R. Grover, I. C. Getting and G. C. Kennedy, Phys. Rev. B7, 567 (1973).CrossRefGoogle Scholar
  58. 58.
    J. R. MacDonald and D. R. Powell, J. Res. NBS 75A, 441 (1971).Google Scholar
  59. 59.
    O. L. Anderson, Phys. Earth Planet Inter. 1, 169 (1968).CrossRefGoogle Scholar
  60. 60.
    M. S. Anderson and C. A. Swenson, Phys. Rev. B15, 10, 5184 (1974).CrossRefGoogle Scholar
  61. 61.
    K. J. Dünn and A. L. Ruoff, Phys. Rev. B10, 2271 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • A. L. Ruoff
    • 1
  • L. C. Chhabildas
    • 2
  1. 1.Cornell UniversityIthacaUSA
  2. 2.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations