Advertisement

Mechanical Behavior of Solids at High Pressure

  • H. Ll. D. Pugh

Abstract

Interest in the mechanical behavior of materials arises from the fact that a knowledge of the stress and strain characteristics of engineering materials is required for the safe and economical design of components and structures. These characteristics, and particularly the limiting conditions leading to plastic deformation and fracture, have been obtained over a considerable period of time as a result of many studies using simple stress systems, e.g. uniaxial tension, compression and torsion tests. In practice, however, components are subjected to more complex stress systems. Since these can be split into deviatoric and hydrostatic components, simple mechanical tests in the presence of hydrostatic pressure can provide invaluable information on the mechanical behavior of engineering solids under complex stress systems.

Keywords

Hydrostatic Pressure Cast Iron Fracture Stress High Hydrostatic Pressure Torsion Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Voigt, Göttinger Nachr. 521 (1893).Google Scholar
  2. 2.
    T. von Karman, Z. Ver. dtsch. Ing. 55, 1747 (1911).Google Scholar
  3. 3.
    R. Boker, PhD. Dissertation, Tech. Hochschule Aachen, Reinisch-Westfalische Germany (1914).Google Scholar
  4. 4.
    M. Ros and A. Eichinger, Eidgenoess Materialpruef Versuchanstalt Ind. Bauw. Gewerbe (Zurich) 34, 1 (1929).Google Scholar
  5. 5.
    G. Cook, Selected Engineering Papers No. 170, Institution of Civil Engineers, London (1934).Google Scholar
  6. 6.
    P. W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York (1952).MATHGoogle Scholar
  7. 7.
    P. W. Bridgman, J. Appl. Phys. 24 (5), 560 (1953).Google Scholar
  8. 8.
    H. Ll. D. Pugh and D. Green, MERL Plasticity Reports No. 103, 1954 and No. 128, 1956 National Engineering Laboratory, East Kilbride, Glasgow.Google Scholar
  9. 9.
    H. L. D. Pugh, J. Lees, K. Ashcroft and D. Gunn, Engineering 212, 5508 (1961).Google Scholar
  10. 10.
    H. L. D. Pugh, G. Hodgson and D. A. Gunn, J. Scient. Instr. 40, 221 (1963).Google Scholar
  11. 11.
    H. L. D. Pugh, Amer. Soc. Testing Mats., Special Technical Publication 374, (February 1964).Google Scholar
  12. 12.
    H. L. D. Pugh and D. A. Gunn, Papers 27, High Pressure Engineering Conference, London (September 11, 1967); Proc. Inst. Mech. Engrs. 182 (1967–68); NEL Report 143, East Kilbride, Scotland (1964).Google Scholar
  13. 13.
    A. Bobrowsky and E. A. Stack, Final Report on NASA Contract, NASW 742, (1965).Google Scholar
  14. 14.
    Y. N. Ryabinin, L. F. Vereshchagin, B. Balashov and L. I. Livshits, Instrum. Tech. 2, 265 (1959).Google Scholar
  15. 15.
    M. Brandes, Prace Inst. Mech. Precyzyjnej 10 (4), 1 (1962).Google Scholar
  16. 16.
    T. E. Davidson and C. J. Homan, Trans. Amer. Inst. Min. Metall Engrs. 227, 167 (1963).Google Scholar
  17. 17.
    S. I. Ratner, Zh. Tekhn. Fiz. 19 (3), 408 (1949).Google Scholar
  18. 18.
    W. A. Gladkovski and M. I. Oleinik, (in Russian), Fiz. Metal i. Mettaloved. 4, 531 (1957); English Translation: Physics Metals Metallogr. 4, 118 (1957).Google Scholar
  19. 19.
    R. B. Gordon and L. F. Mike, Rev. Sci. Instrum. 18, 5411 (1967).Google Scholar
  20. 20.
    T. Pelczynski and I. Pawlak, Pr. Zakl. Plast. Polytech. Warez., (1959).Google Scholar
  21. 21.
    B. I. Beresnev, D. K. Bulychev, and E. D. Martynov, Zawodsk Lab. 8, 1017 (1964).Google Scholar
  22. 22.
    D. T. Griggs, J. Geol. 44, 541 (1936).Google Scholar
  23. 23.
    M. S. Paterson, J. Instn. Engrs. Aust. 36, 23 (1964).Google Scholar
  24. 24.
    M. Nishihara, K. Tanaka and T. Moramatsu, in Proc. 7th Japan Congress of Testing Materials, Soc. Mat. Sci. Kyoto, Japan, (1964), p. 154.Google Scholar
  25. 25.
    D. Carpentier and N. Contre, Rev. Sci. Instrum. 41 (2), 189 (1970).Google Scholar
  26. 26.
    B. I. Beresnev, D. K. Bulychev and E. D. Martynov, Zawodsk Lab 8, 1017 (1964).Google Scholar
  27. 27.
    D. T. Griggs, F. J. Turner and H. C. Heard, in Rock Formation, Memoir 79, D. Griggs and J. Handin, eds., the Geological Society of America, Rochester, New York (1960), Chapt. 4.Google Scholar
  28. 28.
    T. E. Davidson, I. C. Uy and A. P. Lee, Acta Metal 14, 937 (1966).Google Scholar
  29. 29.
    B. Crossland, Proc. Instn. Mech. Engrs. 168 (40), 935 (1954).Google Scholar
  30. 30.
    M. Ohmori, Y. Yoshinaga, T. Kawahata and Y. Sanemasu, Proc. 13th Jap. Conf. Matl. Res., (1970), p. 139.Google Scholar
  31. 31.
    S. Erbel, “Behaviour of Materials Twisted Under Hydrostatic Pressure,” paper presented at conference organized by Department of Metallurgy, Polish Academy of Sciences (April 1966).Google Scholar
  32. 32.
    J. Handin, D. V. Higgs, and J. K. O’Brien, in Rock Formation, Memoir 79, D. Griggs and J. Handin, eds., Geological Society of America, Rochester, New York (1960), p. 245.Google Scholar
  33. 33.
    H. L. D. Pugh and D. Gunn, “An Apparatus for Torsion Tests under High Hydrostatic Pressures,” NEL Report No. 159, National Engineering Laboratory, East Kilbride, Glasgow (1964).Google Scholar
  34. 34.
    A. E. Abey, J. App. Phys. 42 (10), 4085 (1971).Google Scholar
  35. 35.
    P. W. Bridgman, Mod. Phys. 18 (1), 93 (1946).Google Scholar
  36. 36.
    L. F. Vereschagin, E. V. Zubova and V. A. Shapotchkin, Pribory i Tekhn, Esksperim 5, 89 (1960).Google Scholar
  37. 37.
    P. M. Ogibalov and J. A. Kijko, Studies on the Mechanics of High Parameters (in Russian), Moscow University Publishing House, Moscow, U.S.S.R. (1966).Google Scholar
  38. 38.
    L. F. Vereschagin, V. A. Shapotchkin and E. V. Zubova, Fiz. 10, 135 (1960).Google Scholar
  39. 39.
    L. F. Vereschagin and E. V. Zubova, Fiz. Metal i Metalloved 5, 171 (1957).Google Scholar
  40. 40.
    L. F. Vereschagin and A. J. Likhter, Dakl. Akad. Nauk, SSSR 86, 745 (1952).Google Scholar
  41. 41.
    L. F. Vereschagin and V. A. Shapotchkin, Fiz. Metal i Metalloved 7, 479 (1959).Google Scholar
  42. 42.
    L. F. Vereschagin and V. A. Shapotchkin, Fiz. Metal I Metalloved 9, 258 (1960).Google Scholar
  43. 43.
    V. A. Shapotchkin, Fiz. Metal I Metalloved 9, 303 (1960).Google Scholar
  44. 44.
    L. F. Vereschagin and E. V. Zubova, Dokl. Akad. Nauk, SSSR 134, 787 (1960).Google Scholar
  45. 45.
    L. F. Vereschagin and V. A. Shapotchkin, Inzh, Fiz. Zh. 3, 42 (1960).Google Scholar
  46. 46.
    L. F. Vereschagin, V. A. Shapotchkin, and L. B. Pirogova, Fiz. Metal i Metal loved 10, 783 (1960).Google Scholar
  47. 47.
    S. Erbel, Mechanik 10, 538 (1966).Google Scholar
  48. 48.
    A. Bobrowsky, E. A. Stack and A. Austen, Paper SP 65–33 ASTME Conference (1964).Google Scholar
  49. 49.
    J. R. Galli and P. Gibbs, Acta Met. 12, 775 (1964).Google Scholar
  50. 50.
    J. P. Auger and D. Francois, Rev. Phys. Appliquée 9, 637 (1974).Google Scholar
  51. 51.
    T. E. Davidson, Report 199, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (1964), p. 25.Google Scholar
  52. 52.
    H. Vu and P. Johannin, C. R. Acad. Sci. 241 (6), 565 (1955).Google Scholar
  53. 53.
    F. P. Bullen, F. Henderson, M. M. Hutchinson and H. L. Wain, Phil. Mag. 9 (101), 285 (1964).Google Scholar
  54. 54.
    F. P. Bullen, F. Henderson, H. L. Wain and M. S. Paterson, Phil. Mag. 9 (101), 803 (1964).Google Scholar
  55. 55.
    S. V. Radcliffe, ASTM STP No. 374, Amer. Soc. for Test. and Mat., Philadelphia, Pennsylvania (1964), p. 141.Google Scholar
  56. 56.
    P. Haasen and A. W. Lawson, Z. Metallk. 49, 280 (1958).Google Scholar
  57. 57.
    H. G. Mellor and A. S. Wronski, Acta Met. 18, 765 (1970).Google Scholar
  58. 58.
    A. S. Wronski and C. H. Robbins, “The Effects of Hydrostatic Pressure on Fracture and the B.D.T.T. in Polycrystalline Molybdenum”, to be published.Google Scholar
  59. 59.
    H. G. Mellor and A. S. Wronski, Metal Sci. 4, 108 (1970).Google Scholar
  60. 60.
    M. S. Paterson, J. App. Phys. 35 (1), 176 (1969).MathSciNetGoogle Scholar
  61. 61.
    E. F. Chandler, “Effect of Sheathing on the Mechanical Properties of a Material under Hydrostatic Pressure”, NEL Report No. 255, National Engineering Laboratory, East Kilbride, Glasgow (1966).Google Scholar
  62. 62.
    H. L. D. Pugh and D. Green, Proc. Instn. Mech. Engrs. 179(1), 415 (1964–65).Google Scholar
  63. 63.
    E. Aladag, H. L. D. Pugh and S. V. Radcliffe, Acta Metall. 17, 1467 (1969).Google Scholar
  64. 64.
    H. L. D. Pugh and E. F. Chandler, “The Effect of Surface Conditions on the Tensile Behaviour of Beryllium under Hydrostatic Pressure”, NEL Report No. 537, National Engineering Laboratory, East Kilbride, Glasgow (1973).Google Scholar
  65. 65.
    B. Crossland, Mechanical Behaviour of Materials under Pressure, H. Ll. D. Pugh, ed., Elsevier, London (1970), Chapt. 7.Google Scholar
  66. 66.
    H. L. D. Pugh, E. F. Chandler, L. Holliday, and J. Mann, Polymer Eng. Sci. 11 (6), 463 (1971).Google Scholar
  67. 67.
    H. L. D. Pugh and E. F. Chandler, “Mechanical Properties of Materials under Pressure”, Prof. Galerkin’s Anniversary Volume (1974) and NEL Report 577, National Engineering Laboratory, East Kilbride, Scotland (1974).Google Scholar
  68. 68.
    J. S. Harris, I. M. Ward and J. S. C. Parry, J. Mat. Sci. 6 (2), 110 (1971).Google Scholar
  69. 69.
    G. R. Barsch and P. P. Chang, Phys. Stat. Sol. 19, 129, 139 (1967).Google Scholar
  70. 70.
    K. Tanaka, N. Nagao and M. Nakashima, in Proc. 13th Jap. Congr. Mat. Res. (1970), p. 135.Google Scholar
  71. 71.
    B. I. Beresnev, L. F. Vereschagin, Yu. N. Ryabinin and L. D. Livshitz (in Russian) Dekl. Akad. Naul. SSSR, (1960); English translation: ASTIA Doc. AD-259, 251, Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C. (1961).Google Scholar
  72. 72.
    T. Pelczynski, Arch. Hutnictwa 7 (1), 3 (1962).MathSciNetGoogle Scholar
  73. 73.
    M. Brandes, Mechanik 10, 535 (1966).Google Scholar
  74. 74.
    L. D. Livshitz, Yu. N. Ryabinin and B. I. Beresnev, Dokl. Acad. Nauk. SSR 154, 86 (1964).Google Scholar
  75. 75.
    E. D. Martynov, B. I. Beresnev, D. K. Bulychov, K. P. Rodionov and Yu. N. Ryabinin, Acad. Nauk. Ukr. SSR Kiev (1965), p. 4.Google Scholar
  76. 76.
    M. Yajima, M. Ishii, and M. Kobayashi, Intern. J. Fract. Mech. 6 (2), 139 (1970).Google Scholar
  77. 77.
    C. J. Nolan and T. E. Davidson, Trans. Am. Soc. Metals 62, 271 (1969).Google Scholar
  78. 78.
    I. E. French and P. F. Weinrich, Acta. Metall. 8, 87 (1974).Google Scholar
  79. 79.
    H. L. D. Pugh, Bulleid Mem. Lects., Univ. Nottingham Vol. IIIB, Nottingham, England (1965).Google Scholar
  80. 80.
    M. Brandes, Intern. J. Fract. Mech. 3, 1975 (1967).Google Scholar
  81. 81.
    Y. N. Ryabinin, Inzh. Fiz. Zhur. 1, 90 (1958).Google Scholar
  82. 82.
    Y. N. Ryabinin, L. D. Livshitz, and L. F. Vereschagin, Zhur. Tverd. Tela, (1), 476 (1959).Google Scholar
  83. 83.
    E. F. Chandler and W. M. Mair, Proc. Instn. Mech. Eng. 182 (Pt3C), 122 (1967–68).Google Scholar
  84. 84.
    D. Beder and D. Carpentier, paper presented at C.E.A. France - E.H.P.R.G. Meeting Cadarache, France (1968).Google Scholar
  85. 85.
    A. Bobrowsky, paper presented at A.S.M.E. Winter Annual Meeting, ( December 1976 ).Google Scholar
  86. 86.
    P. V. Dembowski, J. Pepe and T. E. Davidson, Acta Met. 22 1121 (1974).Google Scholar
  87. 87.
    T. E. Davidson, I. C. Uy and A. P. Lee, Acta Met. 14, 937 (1966).Google Scholar
  88. 88.
    E. A. Stack and A. Bobrowsky, in Proceedings Conf. Intern. sur la Metallurgie du Beryllium, Paris, (1966), p. 423.Google Scholar
  89. 89.
    D. Carpentier, M. Contre, R. Daumas, J. P. I. Resh and D. Francois, in Proceedings Conf. Intern, sur la Metallurgie du Beryllium, (1966), p. 445.Google Scholar
  90. 90.
    N. Inoue, V. V. Damiano, J. E. Hanafee and H. Conrad, Trans. AIME 242, 2081 (1968).Google Scholar
  91. 91.
    B. I. Beresnev and K. P. Rodionov, in Engineering Solids under Pressure, H. L1. D. Pugh, ed., Institution of Mechanical Engineers, London (1971), p. 153.Google Scholar
  92. 92.
    N. N. Davidenkov and N. F. Wittman, Tech. Phys. U.S.S.R. 4, 308 (1937).Google Scholar
  93. 93.
    H. L. D. Pugh and D. Green, Plasticity Report, 147, National Engineering Laboratory, East Kilbride, Scotland, p. 1958.Google Scholar
  94. 94.
    H. L. D. Pugh and D. Gunn, in Symposium on the Physics and Chemistry of High Pressures, Soc. Chem. Ind., London, (1963), p. 157.Google Scholar
  95. 95.
    H. L. D. Pugh and A. H. Low, J. Inst. Metals 93, 201 (196465).Google Scholar
  96. 96.
    A. Bobrowsky and E. A. Stack, Final Report NASA Contract NASW742, (1965).Google Scholar
  97. 97.
    H. C. Rogers and L. F. Coffin, Jr., “Structural Damage in Metal Working”, Report No. 67-C-047, G.E. Research and Development Center, Schenectady, New York (1967).Google Scholar
  98. 98.
    L. Holliday, J. Mann, G. Pogany, H. L1. D. Pugh and D. Gunn, Nature 202(4930), 381 (1964).Google Scholar
  99. 99.
    S. B. Ainbinder, M. G. Laka and I. Yu. Maiors, Polymer Mech. 1, 50 (1965).Google Scholar
  100. 100.
    D. Sardar, S. V. Radcliffe and E. Baer, Polymer Engng. Sci. 8 (4), 290 (1968).Google Scholar
  101. 101.
    K. D. Pae and D. R. Mears, Polymer Lett. 6, 269 (1968).Google Scholar
  102. 102.
    G. Biglione, E. Baer and S. V. Radcliffe, “Effect of High Hydrostatic Pressure on the Mechnical Behaviour of Homogeneous and Rubber Reinforced Amorphous Polymers”, paper presented at 2nd Intern. Conf. on Fracture, Brighton, England, April 1969.Google Scholar
  103. 103.
    D. R. Mears, K. D. Pae and J. D. Sauer, J. Appl. Phys. 40 (11), 4229 (1969).Google Scholar
  104. 104.
    W. J. Vroom and R. F. Westover, SPE. J. 25, 58 (1969).Google Scholar
  105. 105.
    D. R. Mears and K. D. Pae, Polymer Lett. 7, 349 (1969).Google Scholar
  106. 106.
    S. Rabinowitz, I. M. Ward and J. S. C. Parry, J. Mater. Sci. 5 (1), 29 (1970).Google Scholar
  107. 107.
    A. W. Christiansen, E. Baer and S. V. Radcliffe, Phil. Mag. 24 (188), 451 (1971).Google Scholar
  108. 108.
    B. I. Beresnev, Yu. S. Genshaft, Yu. N. Ryabinin, and E. D. Martynov, Sov. Phys. Dokl. 16 (3), 246 (1971).Google Scholar
  109. 109.
    K. D. Pae and J. A. Sauer, in Engineering Solids under Pressure, H. L1. D. Pugh, ed., Institution of Mechanical Engineers, London (1971).Google Scholar
  110. 110.
    L. A. Davis and C. A. Pampillo, J. Appl. Phys. 42 (12), 4659 (1971).Google Scholar
  111. 111.
    A. A. Silano, S. K. Bhateja and K. D. Pae, Intern. J. Polym. Mater. (GB), 3 (2), 117 (1974).Google Scholar
  112. 112.
    R. A. Duckett, S. H. Joseph and A. M. Zihlif, paper presented at Third Intern. Conference of Field, Deformation and Fracture of Polymers, Cambridge, England, (1976).Google Scholar
  113. 113.
    R. S. Raghava, R. M. Caddell and G. S. Y. Yeh, J. Mater. Sci. 8, 225 (1973).Google Scholar
  114. 114.
    K. Matsushige, S. V. Radcliffe and E. Baer, J. Mater. Sci. 10, 835 (1974).Google Scholar
  115. 115.
    S. Rabinowicz, I. M. Ward and J. S. C. Parry, J. Mater. Sci. 5, 29 (1970).Google Scholar
  116. 116.
    R. A. Duckett and S. H. Joseph, Polymer 17, 329 (1976).Google Scholar
  117. 117.
    A. S. Wronski and M. Pick, J. Mater. Sci. 12, 28 (1977).Google Scholar
  118. 118.
    I. M. Ward, J. Mater. Sci. 6, 1397 (1971).Google Scholar
  119. 119.
    M. Kitagawa, J. Pol. Sc. Pol. Phys. Ed. 14, 2095 (1976).Google Scholar
  120. 120.
    H. L. D. Pugh, P. T. Wilkinson and M. H. Hodge, Proc. Inst. Mech. Eng. 186, 44 (1972).Google Scholar
  121. 121.
    F. J. Fuchs, Mech. Eng. 88 (4), 34 (1966).Google Scholar
  122. 122.
    H. L. D. Pugh, I. M. Marr, C. J. H. Donaldson and P. T. Wilkinson, J. High Temp.-High Press. 7, 609 (1975).Google Scholar
  123. 123.
    N. N. Davidenkov and N. I. Spiridonova, Proc. ASTM 46, 1147 (1946).Google Scholar
  124. 124.
    L. W. Hu, J. Markowitz and T. A. Bartrish, Exptl. Mech. 6 (1), 58 (1966).Google Scholar
  125. 125.
    J. O. Chua and A. L. Ruoff, J. Appl. Phys. 46 (11), 4659 (1975).Google Scholar
  126. 126.
    A. Oguchi and I. Yoshima, Trans. Jap. Inst. Met. 14 (4) ( 1973Google Scholar
  127. 127.
    A. Oguchi, I. Yoshida and M. Nobuki, Trans. Jap. Inst. Met. 13, 63 (1972).Google Scholar
  128. 128.
    M. Nishihara, S. Miura and T. Hirano, J. High Temp.-High Press. 4, 281 (1972).Google Scholar
  129. 129.
    D. Bedere, C. Jamard, A. Jarland, and D. Francois, Acta Met. 19 (9), 973 (1971).Google Scholar
  130. 130.
    D. Carpentier, D. Francois, Eng. Solids Under Pressure, H. Ll. D. Pugh, ed., Inst. Mech. Eng., London (1971), p. 61.Google Scholar
  131. 131.
    M. Ohmori, Y. Yoshinaga, K. Sukegawa, and Y. Muruyama, in Proc. 16th Jap. Congr. Mater. Res. (1973), p. 120.Google Scholar
  132. 132.
    M. Nobuki and A. J. Oguchi, Jap. Inst. Met. 38 (5), 401 ( 1974Google Scholar
  133. 133.
    A. S. Wronski, paper presented at Intern. Conf. on Fract., Munich, Germany, April 1973.Google Scholar
  134. 134.
    I. E. French and P. F. Weinrich, Acta Met. 21, 1533 (1973).Google Scholar
  135. 135.
    A. E. Abey, J. App. Phys. 44(5), 2087 (1973.(Google Scholar
  136. 136.
    A. L. Ruoff and J. Wanagel, J. App. Phys., 46 (11), 4647 ( 1975Google Scholar
  137. 137.
    W. A. Spitzig, R. J. Sober and O. Richmond, Acta Met. 23, 885 (1975).Google Scholar
  138. 138.
    S. B. Ainbinder and K. I. Alksne, Properties of Polymers at High Pressures, Moscow Izd. Khimiya (1973).Google Scholar
  139. 139.
    M. S. Stucke, A. S. Wronski, Prob. Brit. Ceram. Soc. 25, 109 (1975).Google Scholar
  140. 140.
    R. M. Caddell, R. S. Raghava and A. C. Atkins, Mat. Sci. and Eng. 13, 113 (1974).Google Scholar
  141. 141.
    R. E. Robertson, Chem. Phys., 44, 3950 (1966).Google Scholar
  142. 142.
    R. A. Duckett, S. Rabinowitz and I. M. Ward, J. Mater. Sci. 5, 909 (1970).Google Scholar
  143. 143.
    R. A. Duckett, B. C. Goswami, L. S. A. Smith, I. M. Ward and A. M. Zihlif, to be published.Google Scholar
  144. 144.
    N. Brown and I. M. Ward, Phil. Mag. 17, 961 (1968).Google Scholar
  145. 145.
    N. Brown, R. A. Duckett and I. M. Ward, Phil. Mag. 18, 483 (1968).Google Scholar
  146. 146.
    J. G. Rider and E. J. Hargreaves, Polymer Sci. 27, 829 (1969).Google Scholar
  147. 147.
    B. Crossland and W. H. Dearden, Proc. Inst. Mech. Engrs. 179 (1), 415 (1965).Google Scholar
  148. 148.
    H. L. D. Pugh, Nature 218 (5145), 985 (1968).Google Scholar
  149. 149.
    H. L. D. Pugh and E. F. Chandler, “The Deformation and Fracture of Metals used in High Pressure Containers”, paper presented at Second Inter. Conf. on High Pressure Engineering 1975.Google Scholar
  150. 150.
    D. K. Bulychev, B. I. Beresnev, M. G. Gaidukov, E. D. Martynov, K. P. Rodionov and Y. N. Ryabinin, Soviet Phys. Dokl. 9 (5), 385 (1964).Google Scholar
  151. 151.
    H. Sekiguchi, K. Osakada and H. J. Hayashi, Inst. Met. 101, 167 (1973).Google Scholar
  152. 152.
    D. Francois, paper presented at Intern. Conf. on Fracture, University of Waterloo, Ontario, Canada, June 1977.Google Scholar
  153. 153.
    D. Francois and T. R. Wilshaw, J. App. Phys. 39 (9), 4170 (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • H. Ll. D. Pugh
    • 1
  1. 1.Rolls Royce, Ltd.BristolEngland

Personalised recommendations