Advertisement

Multiaxial Testing to Determine Material Behavior for Design of Energy Related Structures

  • S. Sture
  • R. H. Atkinson
  • H.-Y. Ko

Abstract

The development of energy resources requires the construction of facilities that often are subjected to severe environmental conditions. The ability to analyze and design structural components that are required to sustain high temperatures and stresses plays a crucial role in the economy and sometimes in the feasibility of the facility. Examples of such components are the prestressed concrete reactor vessels (PCRV), pillars in deep coal mines, and roofs in oil shale mines used for in situ retorting.

Keywords

Strain Increment Shear Compliance Principal Material Applied Normal Stress Data Reduction Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Concrete Institute, SP 34, “Concrete for Nuclear Reactors,” Detroit, Michigan (1970).Google Scholar
  2. 2.
    O. C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill Book Company, London (1971).MATHGoogle Scholar
  3. 3.
    C. S. Desai and J. F. Abel, Introduction to the Finite Element Method, Van Nostrand Reinhold Company, New York (1972).MATHGoogle Scholar
  4. 4.
    D. Fredrick and T. S. Chang, Continuum Mechanics, Scientific Publishers, Inc., Boston, Massachusetts (1972).Google Scholar
  5. 5.
    R. H. Atkinson, Ph.D. Thesis, University of Colorado, Boulder, Colorado (1972).Google Scholar
  6. 6.
    L. Nymoen, M.S. Thesis, University of Colorado, Boulder, Colorado (1970).Google Scholar
  7. 7.
    S. Sture, M.S. Thesis, University of Colorado, Boulder, Colorado (1973).Google Scholar
  8. 8.
    J. A. Pearce, Ph.D. Thesis, Cambridge University, Cambridge, England (1970).Google Scholar
  9. 9.
    P. V. Lade, Ph.D. Thesis, University of California, Berkeley, California (1972)Google Scholar
  10. 10.
    H. Kupfer, H. K. Hilsdorf, and H. Rusch, J. ACI 66 (8), 656 (1969).Google Scholar
  11. 11.
    R. H. Atkinson and H. Y. Ko, Intern. J. Rock Mech. Min. Sci. 10, 351 (1973).CrossRefGoogle Scholar
  12. 12.
    H. Y. Ko and S. Sture, J. Comp. Mat. 8, 178 (1974).CrossRefGoogle Scholar
  13. 13.
    R. F. S. Hearmon, An Introduction to Applied Anisotropic Elasticity, Oxford University Press, Oxford, England (1961).Google Scholar
  14. 14.
    R. Hill, The Mathematical Theory of Plasticity, Oxford Clarendon Press, Oxford, England (1950).Google Scholar
  15. 15.
    Y. Yamada, N. Yoshimura, and T. Sakurai, Intern. J. Mech. Sci. 10, 343 (1968).CrossRefMATHGoogle Scholar
  16. 16.
    H. Y. Ko and K. H. Gerstle, Intern. J. Rock Mech. Min. Sci. 13, 81 (1976).CrossRefGoogle Scholar
  17. 17.
    K. H. Gerstle, D. H. Linse, P. Bertacchi, M. D. Kotsovos, H. Y. Ko,J. B. Newman, P. Rossi, G. Schickert, M. A. Taylor, L. A. Traina, and R. M. Zimmerman, “Strength of Concrete Under Multiaxial Stress States,” paper presented at ACI Convention, Mexico City, Mexico, October 1976.Google Scholar
  18. 18.
    E. Andenaes, K. H. Gerstle, and H. Y. Ko, “Response of Mortar and Concrete to Biaxial Compression,” to appear in J. Struct. Div., ASCE.Google Scholar
  19. 19.
    Z. Mroz, J. de Mecanique 2 (1), 21 (1963).MathSciNetGoogle Scholar
  20. 20.
    C. Zienkiewicz, 2nd Intern. Conf. Num. Methods in Geotech. Eng., Blacksburg, Virginia (1976).Google Scholar
  21. 21.
    D. C. Drucker, Quarterly Appl. Math. 14, 35 (1956).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • S. Sture
    • 1
  • R. H. Atkinson
    • 2
  • H.-Y. Ko
    • 2
  1. 1.Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.University of ColoradoBoulderUSA

Personalised recommendations