Advertisement

The Pressure Induced Strain Transition In NiF2

  • J. D. Jorgensen
  • T. G. Worlton
  • J. C. Jamieson

Abstract

At zero pressure, NiF2 has the well-known rutile (TiO2) structure which belongs to the tetragonal P42/mnm space group, This structure may be viewed as consisting of sheets of linear F-Ni-F molecules oriented along <110> in the sheet at z = 0 and along <110> in the sheet at z = 1/2. Compounds with this rutile structure have received considerable attention as candidates for pressure-induced phase transitions resulting from a softening of the acoustic mode corresponding to the effective elastic consant 1/2(C11 - C12) [1–3]. However, before the present structural measurements on NiF2, the second-order strain transition in TeO2, which has a slightly distorted rutile structure, was the only such transition where the relevant structural parameters, elastic constants, and acoustic phonon modes had been studied in detail at high pressure and compared with Landau’s theory [4–8].

Keywords

Unit Cell Volume Atomic Position Rutile Structure Thermal Displacement Anisotropic Thermal Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. N. Pandey, Phys. stat. Sol. U, 743 (1965).Google Scholar
  2. 2.
    M. E. Striefler and G. R. Barsch, Phys. stat. Sol. (B) 59, 205 (1973).CrossRefGoogle Scholar
  3. 3.
    M. E. Strief ler and G. R. Barsch, Phys. stat. Sol. (B) 64_, 613 (1974); also 67, 417 (1975).CrossRefGoogle Scholar
  4. 4.
    T. G. Worlton and R. A. Beyerlein, Phys. Rev. B12, 1899 (1975).Google Scholar
  5. 5.
    P. S. Peercy, I. J. Fritz, and G. A. Samara, J. Phys. Chem. Solids 36, 1105 (1975).CrossRefGoogle Scholar
  6. 6.
    D. B. McWhan, R. J. Birgeneau, W. A. Bonner, H. Taub, and J. D. Axe, J. Phys. C: Solid State Phys. 8_, L81 (1975).Google Scholar
  7. 7.
    E. F. Skelton, J. L. Feldman, C. Y. Liu, and I. L. Spain, Phys. Rev. Bl_3, 2605 (1976).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, London (1958), Chap. XIV.Google Scholar
  9. 9.
    A. Y. Wu, Phys. Lett. 60A, 260 (1977).Google Scholar
  10. 10.
    J. C. Jamieson and A. Y. Wu, J. Appl. Phys. 48, 4573 (1977).CrossRefGoogle Scholar
  11. 11.
    R. A. Cowley, Phys. Rev. B13, 4877 (1976).Google Scholar
  12. 12.
    N. Boccara, Ann. Phys. 47, 40 (1968).CrossRefGoogle Scholar
  13. 13.
    J. M. Carpenter, Nucl. Instr. Meth. 47, 179 (1967).CrossRefGoogle Scholar
  14. 14.
    R. M. Brugger, R. B. Bennion, T. G. Worlton, and W. R. Myers, Trans. Amer. Cryst. Assoc.. 5, 141 (1969).Google Scholar
  15. 15.
    D. L. Decker, J. Appl. Phys. 42, 3239 (1971).CrossRefGoogle Scholar
  16. 16.
    T. G. Worlton, J. D. Jorgensen, R. A. Beyerlein, and D. L. Decker, Nucl. Instr. Meth. 127, 331 (1976).CrossRefGoogle Scholar
  17. 17.
    J. F. Nye, Physical Properties of Crystals, 2nd ed., Pergamon Press, Oxford (1969), Chap. V III.Google Scholar
  18. 18.
    I. J. Fritz and P. S. Peercy, Solid State Commun. 16, 1197 (1975).CrossRefGoogle Scholar
  19. 19.
    A. E. Austin, J. Phys. Chem. Solids 30, 1282 (1971).Google Scholar
  20. 20.
    L. Nagel and M. O’Keeffe, Mat. Res. Bull. 6, 1317 (1971).CrossRefGoogle Scholar
  21. 21.
    J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, Phys. Rev. B3, 3457 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • J. D. Jorgensen
    • 1
  • T. G. Worlton
    • 1
  • J. C. Jamieson
    • 2
  1. 1.Argonne National LaboratoryAronneUSA
  2. 2.The University of ChicagoChicagoUSA

Personalised recommendations