A Test of the NaCl Equation of State by the Behavior of the Shear Velocities at High Pressure

  • O. L. Anderson
  • J. Mammone


Decker’s theoretical equation of state for NaCl [1] now has the enviable prestige of being used as the primary pressure standard at very high pressure. Secondary pressure standards, such as for example, the ruby fluorescent gauge [2], rely on the theoretical extrapolation of the P, V, T relationships calculated from the lattice potential assumed by Decker. It is somewhat remarkable that this pressure standard has had few, if any, actual tests of its validity at high pressure. There are six parameters in the potential and these are evaluated by room pressure constants, so little actual high pressure data is injected into the theory.


Elastic Constant Bulk Modulus Shear Velocity Near Neighbor Shear Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Decker, J. App. Phys. 42, 3239 (1971).CrossRefGoogle Scholar
  2. 2.
    P. M. Bell and H. K. Mao, Carnegie Inst. of Washington Year Book 74, 399 (1975).Google Scholar
  3. 3.
    O. L. Anderson, Proceed. Natl. Acad. Sci. 54, 667 (1965).CrossRefGoogle Scholar
  4. 4.
    L. C. Chhabildas and A. L. Ruoff, J. App. Phys. 47, 4182 (1976).CrossRefGoogle Scholar
  5. 5.
    O. L. Anderson, J. Geophys. Res. 75, 2719 (1970).CrossRefGoogle Scholar
  6. 6.
    A. L. Ruoff and L. C. Chhabildas, J. App. Phys. 47, 4687 (1976).Google Scholar
  7. 7.
    O. L. Anderson and R. Liebermann, in Applications of Modern Physics to the Earth and Planetary Interiors, S. K. Runcorn, ed., John Wiley and Sons, New York (1969), p. 425.Google Scholar
  8. 8.
    O. L. Anderson, in Proceedings of 4th International Conference on High Pressure, Kyoto, Japan (1974), p. 398.Google Scholar
  9. 9.
    N. Soga and O. L. Anderson, J. App. Phys. 38, 1733 (1967).Google Scholar
  10. 10.
    H. H. Demarest, J. Geophys. Res. 77, 848 (1972).CrossRefGoogle Scholar
  11. 11.
    F. Seitz, The Modern Theory of Solids, 1st ed.,McGraw Hill Book Company, New York (1940), p. 84.Google Scholar
  12. 12.
    O. L. Anderson and H. H. Demarest, J. Geophys. Res. 76, 1349 (1971).CrossRefGoogle Scholar
  13. 13.
    F. Simon, Handbuch der Physik 10, 360 (1970).Google Scholar
  14. 14.
    M. R. Vukcevich, Phys. Sat. Sol. 40, 193 (1970).CrossRefGoogle Scholar
  15. 15.
    G. Peckham, Proc. Phys. Soc. 90, 657 (1967).CrossRefGoogle Scholar
  16. 16.
    F. Hajj, J. Chem. Phys. 44, 4618 (1966).CrossRefGoogle Scholar
  17. 17.
    R. W. Hill, Proc. Phys. Soc. London 65, A 349 (1952).Google Scholar
  18. 18.
    J.K.D. Verma and M. D. Aggarwal, J. App. Phys. 46, 2841 (1975).CrossRefGoogle Scholar
  19. 19.
    C. H. Whitfield, E. M. Brody, and W. A. Bassett, Rev. Sci. Instrum. 47, 942 (1976).CrossRefGoogle Scholar
  20. 20.
    H. Spetzler, C. G. Sammis, and R. J. O’Connell, J. Phys. Chem. Solids 33, 1727 (1972).CrossRefGoogle Scholar
  21. 21.
    C. E. Morris, J. C. Jamieson, and F. L. Yager, J. App. Phys. 47, 3979 (1976).CrossRefGoogle Scholar
  22. 22.
    J. Frankel, F. J. Pick, and C. G. Homar, J. Geophys. Res. 81, 6357 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • O. L. Anderson
    • 1
  • J. Mammone
    • 1
  1. 1.University of California at Los AngelesLos AngelesUSA

Personalised recommendations