The Pressure-Temperature Stability Field of Barium Titanate under Constraint

  • G. W. Timco
  • H. H. Schloessin


To date, the effects of hydrostatic pressure on the polarization, dielectric constant, dielectric loss, and transition temperature of many perovskite-structured ferroelectrics have been reasonably well investigated (see, for example, Samara [1] for a review). For all of these investigations, however, the pressure was generated with fluid-media hydrostatic-pressure systems. Because the applied pressure is truly hydrostatic, experiments of this type are extremely valuable since they explain ferroelectric behavior in a straightforward, tractable, experimental situation. However, for a geophysicist interested in the behavior of a ferroelectric (FE) material in a planetary interior [2,3], experiments of this type are insufficient. Ferroelectric phases existing in planetary interiors with a considerable mechanical strength would have to comply with quasi-hydrostatic stress conditions and constraints set up by deviatoric stresses and strains. Exactly this type of environment is met in high-pressure experiments when a solid medium is used for the transmission of pressure [4]. Thus, in planetary interiors and in the case of solid-media, high-pressure experiments alike, the FE material forms an elastically and dielectrically inhomogeneous inclusion (transforming inclusion) [5] in a nonferroelectric matrix. In this case, due to the presence and consequent constraint of the surrounding (matrix) material, individual FE crystals are not entirely free to develop the full spontaneous strain associated with the polarization at the transition. Thus, transitions occurring in the FE inclusion are accompanied by self-stressing. From thermodynamic considerations, it is evident that in this case one has to account for contributions to the total free energy from terms related to both crystal and matrix, as well as their mutual interactions and interactions with the applied stress field.


Deviatoric Stress Barium Titanate Barium Titanate Photographic Record Planetary Interior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Samara, in Advances in High Pressure Research, Vol. 3, R. S. Bradley, ed., Academic Press, New York (1969), p. 155.Google Scholar
  2. 2.
    H. H. Schloessin and G. W. Timco, Phys. Earth Pl. Int. 14, 6 (1977).CrossRefGoogle Scholar
  3. 3.
    G. W. Timco, Ph.D. Thesis, University of Western Ontario, London, Ontario, Canada (1977).Google Scholar
  4. 4.
    J. Lees, in Advances in High Pressure Research, Vol. 1, R. S. Bradley, ed., Academic Press, New York (1966), p. 1.Google Scholar
  5. 5.
    J. D. Eshelby, Proc. Roy. Soc. London A 241, 276 (1957).MathSciNetGoogle Scholar
  6. 6.
    G. A. Samara, Phys. Rev. 151, 378 (1966).CrossRefGoogle Scholar
  7. 7.
    H. T. Hall, in Metallurgical Society Conferences, Vol. 22, Gordon and Breach Science Publishers Ltd., London (1964), p. 133.Google Scholar
  8. 8.
    C. B. Sawyer and C. H. Tower, Phys. Rev. 35, 269 (1930).CrossRefGoogle Scholar
  9. 9.
    G. W. Timco and H. H. Schloessin, High Temp.-High Press. 8, 73 (1976).Google Scholar
  10. 10.
    H. T. Martirena and J. C. Burfoot, J. Phys. C: Sol. St. Phys. 7, 3182 (1974).CrossRefGoogle Scholar
  11. 11.
    G. W. Timco and H. H. Schloessin, Ferroelectrics 11, 409 (1976).CrossRefGoogle Scholar
  12. 12.
    A. R. von Hippel, Dielectrics and Waves, John Wiley and Sons, New York (1954).Google Scholar
  13. 13.
    B. Jaffe, W. R. Cook and H. Jaffe, Piezoelectric Ceramics, Academic Press, New York (1971).Google Scholar
  14. 14.
    H. H. Schloessin and G. W. Timco, Ferroelectrics 14, 729 (1976).CrossRefGoogle Scholar
  15. 15.
    H. Jaffe, D. Berlincourt and J. M. McKee, Phys. Rev. 105, 57 (1957).CrossRefGoogle Scholar
  16. 16.
    J. Lees and J. H. McCartney, J. Sci. Instr. (J. Phys. E.) Ser. 2, 1, 911 (1968).CrossRefGoogle Scholar
  17. 17.
    G. W. Timco and H. H. Schloessin, High Temp.-High Press. 9, 325 (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • G. W. Timco
    • 1
  • H. H. Schloessin
    • 1
  1. 1.University of Western OntarioLondonCanada

Personalised recommendations