Identification of Radiative Thermal Conductivity of Olivine up to 25 Kbar and 1500 K

  • G. H. Schärmeli


Ever since the first model calculations of the thermomechanical state of the lithosphere or upper mantle, it has become desirable to have precise knowledge of the thermal conductivity and thermal diffusivity of mantle materials as a function of pressure and temperature. Due to the uncertainty of the thermal conduction involved, it has not been possible, for example, to conclude from the results of sea floor spreading models whether the oceanic lithosphere in an area should be regarded as depleted or enriched in radioactive elements [1]. Statements on lateral petrological variations normal to the crest axis of spreading centers [2] and on temperature depth distributions [3] have remained doubtful. More recent models of the thermomechanical state of the upper mantle [4] or of convection [5,6] are suitable for providing more precise information relative to a variable thermal conductivity.


Thermal Conductivity Thermal Resistivity Optical Scattering Variable Thermal Conductivity Radiation Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Sclater and J. Francheteau, Geophys. J. R. Astr. Soc. 20, 509 (1970).CrossRefGoogle Scholar
  2. 2.
    D. Forsyth and F. Press, J. Geophys. Res. 76, 7963 (1971).CrossRefGoogle Scholar
  3. 3.
    Y. Bottinga and C. Allegre, Tectonophys. 18, 1 (1973).CrossRefGoogle Scholar
  4. 4.
    Froideveaux and G. Schubert, J. Geophys. Res. 80, 2553 (1975).CrossRefGoogle Scholar
  5. 5.
    A. Rice, J. Geophys. Res. 77, 2514 (1972).CrossRefGoogle Scholar
  6. 6.
    D. Turcotte, A. Hsui, K. Torrance and G. Schubert, J. Fluid Mech. 64, 369 (1974).CrossRefMATHGoogle Scholar
  7. 7.
    H. Fujisawa, N. Fujii, H. Mizutani, H. Kanamori and S. Akimoto, J. Geophys. Res. 73, 4727 (1968).CrossRefGoogle Scholar
  8. 8.
    W. Staudacher, M. S. Thesis, Inst. Angew. Geophys., München, Germany (1972).Google Scholar
  9. 9.
    H. Kanamori, N. Fujii and H. Mizutani, J. Geophys. Res. 73, 595 (1968).CrossRefGoogle Scholar
  10. 10.
    J. Schatz and G. Simmons, J. Geophys. Res. 77, 6966 (1972).CrossRefGoogle Scholar
  11. 11.
    K. Horai and G. Simmons, Earth Planet. Sci. Lett. 6, 359 (1969).Google Scholar
  12. 12.
    K. Horai, J. Geophys. Res. 76, 1278 (1971).CrossRefGoogle Scholar
  13. 13.
    D. Hughes and F. Sawin, Phys. Rev. 161, 861 (1967).CrossRefGoogle Scholar
  14. 14.
    W. Kingery, J. Frankl, R. Coble and T. Vasilos, J. Am. Ceram. Soc. 37, 107 (1954).CrossRefGoogle Scholar
  15. 15.
    G. Schärmeli, “A Realistic Evaluation Model for High Pressure, High Temperature Thermal Diffusivity Experiments Using Angstrom’s Method,” to be published.Google Scholar
  16. 16.
    L. Fillipov, High Temp. 2, 733 (1964).Google Scholar
  17. 17.
    E. Moeller, in Proc. 8th Conf. Thermal Conductivity, Plenum Press, New York (1969).Google Scholar
  18. 18.
    G. Schärmeli, “Thermal Conductivity and Diffusivity Variations of Waterless Pyrophyllite on Successively Heating to 1.500 K,” to be published.Google Scholar
  19. 19.
    G. Schärmeli, M. S. Thesis, Inst. Angew. Geophys., München, Germany (1977).Google Scholar
  20. 20.
    G. Schärmeli, “Radiative Thermal Conductivity Inside an Emitting, Absorbing and Scattering Continuum,” to be published.Google Scholar
  21. 21.
    S. Clark, Jr., Trans. Am. Geophys. Un. 38, 931 (1957).CrossRefGoogle Scholar
  22. 22.
    Y. Fukao, H. Mizutani and S. Uyeda, Phys. Earth Planet. Int. 1, 57 (1968).Google Scholar
  23. 23.
    T. Shankland, J. Geophys. Res. 75, 409 (1970).CrossRefGoogle Scholar
  24. 24.
    G. Leibfried and E. Schlömann, Nachr. Akad. Wiss. Göttingen 4, 71 (1954).Google Scholar
  25. 25.
    P. Klemens, Sol. State Phys. 7, 1 (1958).CrossRefGoogle Scholar
  26. 26.
    M. Roufosse and P. Klemens, Phys. Rev. B 7, 5379 (1973).CrossRefGoogle Scholar
  27. 27.
    J. Parrott, in Intern. Conf. on Phonon Scattering in Solids, Paris, France (1972).Google Scholar
  28. 28.
    U. Nitsan and T. Shankland, Geophys. J. R. Astr. Soc. 45, 59 (1976).CrossRefGoogle Scholar
  29. 29.
    A. Duba, Lawrence Livermore Laboratory Rept. UCRL-78275 (1976).Google Scholar
  30. 30.
    M. Schober, M. S. Thesis, Inst. Angew. Geophys., München, Germany (1970).Google Scholar
  31. 31.
    T. Shankland, in The Application of Modern Physics to the Earth and Planetary Interiors, S. Runcorn, ed., John Wiley and Sons, London (1969).Google Scholar
  32. 32.
    O. Anderson, E. Schreiber, R. Liebermann and N. Soga, Rev. Geophys. 6, 491 (1968).CrossRefGoogle Scholar
  33. 33.
    M. Kumazawa and O. Anderson, J. Geophys. Res. 74, 5961 (1969).CrossRefGoogle Scholar
  34. 34.
    A. Lawson, J. Phys. Chem. Solids 3, 155 (1957)CrossRefGoogle Scholar
  35. 35.
    D. Mooney and R. Steg, High Temp.-High Press. 1, 237 (1969).Google Scholar
  36. 36.
    S. Clark and A. Ringwood, Rev. Geophys. 2, 35 (1964).CrossRefGoogle Scholar
  37. 37.
    J. Minster and C. Archambeau, Eos Trans. AGU 51, 824 (1970).Google Scholar
  38. 38.
    R. Burns, Am. Miner. 55, 1608 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • G. H. Schärmeli
    • 1
  1. 1.Universität MünchenMunichW. Germany

Personalised recommendations