Advertisement

Recent Progress in Hydrothermal Quartz Crystallization

  • R. A. Laudise

Abstract

Because of its unique piezoelectric properties α-quartz is a singularly important material in electronics and after Si comprises the largest volume Single crystal prepared commercially. The high-pressure crystallization of quartz under hydrothermal conditions has a long and distinguished history which will not be reviewed here. The reader should consult one of several recent reviews [1,2]. High-pressure conditions are required so that temperature and solvent density may be kept in a range where the solubility of α-quartz is sufficient to allow controlled crystal growth. The apparatus [3] and physical chemistry of quartz solubility [4], growth [5] and impurity partition [6] have been well studied and the reader should consult recent papers for this information. In this paper we review three new developments in quartz growth: (1) Alternative nutrient to that available from Brazil as feed stock for recrystallization; (2) the elimination of strain and cracking in quartz; and (3) the preparation of dislocation-free quartz.

Keywords

Vein Quartz Feed Stock Iron Silicate North American Continent Vitreous Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Ballman and R. A. Laudise, in The Art and Science of Growing Crystals, J. J. Gilman, ed., John Wiley and Sons, New York (1963), p. 231.Google Scholar
  2. 2.
    R. A. Laudise, The Growth of Single Crystals, Prentice Hall, Englewood Cliffs, New Jersey (1970).Google Scholar
  3. 3.
    R. A. Laudise and J. W. Nielsen, in Solid State Physics, Vol. VII, F. Seitz and D. Turnbull, eds., Academic Press, New York (1961).Google Scholar
  4. 4.
    R. A. Laudise and A. A. Ballman, J. Phys. Chem. 65, 1396 (1961).CrossRefGoogle Scholar
  5. 5.
    R. A. Laudise, J. Am. Chem. Soc. 81, 562 (1959).CrossRefGoogle Scholar
  6. 6.
    N. C. Lias, E. E. Grudenski, E. D. Kolb, and R. A. Laudise, J. Crystal Growth 18, 1 (1973).CrossRefGoogle Scholar
  7. 7.
    E. D. Kolb, K. Nassau, R. A. Laudise, E. E. Simpson, and K. M. Kroupa, J. Crystal Growth 26, 93 (1976).CrossRefGoogle Scholar
  8. 8.
    W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals Vol. 4, John Wiley and Sons, New York (1963), p. 179.Google Scholar
  9. 9.
    W. D. Johnson, Jr. and R. D. Butler, Bull. Geol. Soc. Am. 57, 601 (1946).CrossRefGoogle Scholar
  10. 10.
    R. B. Stond, R. H. Arndt, F. B. Fulkerson, and W. G. Diamond, “Mineral Resources and Industry of Arkansas,” Bulletin 645, Bureau of Mines, U.S. Government Printing Office, Washington, D. C. (1969).Google Scholar
  11. 11.
    R. H. Jahns, Economic Geol. 50, 1025 (1955).Google Scholar
  12. 12.
    R. H. Jahns and C. W. Bamham, Economic Geol. 64, 843 (1969).CrossRefGoogle Scholar
  13. 13.
    E. N. Cameron, R. H. Jahns, A. H. McNair, and L. R.Paye. R.Paye, “Internal Structure of Granitic Pegmatites,” Economic Geol. Monograph No. 2, (1949).Google Scholar
  14. 14.
    A. A. Ballman, R. A. Laudise, and D. W. Rudd, Appl. Phys. Letters 8, 53 (1966).CrossRefGoogle Scholar
  15. 15.
    R. L. Barns, E. D. Kolb, R. A. Laudise, E. E. Simpson, and K. M. Krupa, J. Crystal Growth 34, 189 (1976).CrossRefGoogle Scholar
  16. 16.
    R. L. Barns, P. E. Freeland, E. D. Kolb, R. A. Laudise, and J. R. Patel, J. Crystal Growth, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • R. A. Laudise
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations