Shock Compression of a Pyrolytic, Ceylon Natural, and Hot-Pressed Synthetic Graphite to 120 GPa

  • W. H. Gust
  • D. A. Young


In 1961, De Carli and Jamieson [1] recovered diamonds from shock experiments. Since then, shock-induced solid-solid phase transitions in carbon have been of continued interest because a complete description of the process is not yet available. Bundy and Kasper [2] enumerated the parameter requirements for static-pressure synthesis of diamond. However, the reaction times involved in static-pressure synthesis are much longer than those of the shocked case. Also, because temperature control is better, it is unclear whether Bundy’s observations apply to shock experiments.


Boron Nitride Rarefaction Wave Shock Compression Pyrolytic Graphite Graphite Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. S. DeCarli and J. C. Jamieson, Science 133, 1821 (1961).CrossRefGoogle Scholar
  2. 2.
    F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).CrossRefGoogle Scholar
  3. 3.
    M. N. Pavlovskii and V. P. Drakin, Zh. Eksp. Teor. Fiz. Pis’ma Red. 169 (1966); Red. 4, 169 (1966); English Translation JETP Lett. 116 (1966).Google Scholar
  4. 4.
    S. Minomura and H. G. Drickamer, J. Phys. Chem. Solids 23, 451 (1962).CrossRefGoogle Scholar
  5. 5.
    W. Paul and H. Brooks, Phys. Rev. 94_, 1128 (1954).Google Scholar
  6. 6.
    W. H. Gust and E. B. Royce, J. Appl. Phys. 42, 1897 (1971).CrossRefGoogle Scholar
  7. 7.
    W. H. Gust and E. B. Royce, J. Appl. Phys. 4 3, 4437 (1972).CrossRefGoogle Scholar
  8. 8.
    B. J. Aider and R. H. Christian, Phys. Rev. Lett. 7, 367 (1961).CrossRefGoogle Scholar
  9. 9.
    R. F. Trunin, G. V. Simikov, B. V. Moiseev, L. F. Popov, and M. A. Podurets, Zh. Eksp. Teor. Fiz. 56, 1161 (1969); English translation Sov. Phys.-JETP 29, 628 (1969).Google Scholar
  10. 10.
    R. G. McQueen and S. P. Marsh, in Proc. Symposium on High Dynamic Pressures, Gordon and Breach, New York (1968), p. 207.Google Scholar
  11. 11.
    L. F. Trueb, J. Appl. Phys. 39, 4707 (1968).CrossRefGoogle Scholar
  12. 12.
    L. F. Trueb, J. Appl. Phys. 42, 503 (1971).CrossRefGoogle Scholar
  13. 13.
    L. F. Vereshchagin, E. N. Yakovlev, B. V. Vinogradov, V. P. Sakum, and G. N. Stepanov, High Temp.-High Press. 6, 505 (1974).Google Scholar
  14. 14.
    M. Van Thiel, B. L. Hord, and K. Boutwell, in Proc. 4th Intern. Conference on High Pressure, Kawakita Printing Co., Kyoto, Japan (1975), p. 546.Google Scholar
  15. 15.
    J.J. Folkins and W. H. Gust, Bull. Am. Phys. Soc. 20, 1514 (1975).Google Scholar
  16. 16.
    W. H. Gust and D. A. Young, Phys. Rev. B 15, 5012 (1977).CrossRefGoogle Scholar
  17. 17.
    F. R. Corrigan and F. P. Bundy, J. Chem. Phys. 63, 3812 (1975).CrossRefGoogle Scholar
  18. 18.
    M. N. Pavlovskii, Fiz. Tverd, Tela. 13, 893 (1971); English translation Sov. Phys.-Solid State 13, 893 (1971).Google Scholar
  19. 19.
    H. J. McSkimmin and P. Andreatch, J. Appl. Phys. 43, 2944 (1972).CrossRefGoogle Scholar
  20. 20.
    J. A. Van Vechten, Phys. Rev. B 7, 1479 (1973).CrossRefGoogle Scholar
  21. 21.
    N. S. Fateeva and L. F. Vereschagin, Zh. Eksp. Teor. Fiz. Pis’ma Red 13, (1971).Google Scholar
  22. 22.
    G. R. Gathers, J. W. Shaner, and D. A. Young, Lawrence Livermore Laboratory, Rep. No. UCRL-51644 (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • W. H. Gust
    • 1
  • D. A. Young
    • 1
  1. 1.Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations