Advertisement

Volume Dependence of the Grüneisen Coefficient for Aluminum

  • J. P. Romain
  • A. Migault
  • J. Jacquesson

Abstract

The volume dependence of the Grüneisen coefficient γ has been the subject of numerous theoretical approaches. Commonly used formulations are those of Slater [1], Dugdale-Mac Donald [2], and Vashchenko-Zubarev [3]. More recently, Migault [4,5] has proposed a generalization of these theories, and this new formulation was shown [6] to be consistent with both shock data and the pressure dependence of the Poisson ratio measured by ultrasonic techniques under static pressure for several elements.

Keywords

Bulk Modulus Pressure Dependence Poisson Ratio Volume Dependence Pressure Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Slater, Introduction to Chemical Physics, McGraw-Hill Book Company, New York (1939).Google Scholar
  2. 2.
    J. S. Dugdale and D.K.C. MacDonald Phys. Rev. 89_, 832 (1953).Google Scholar
  3. 3.
    V. Ya Vashchenko and V. N. Zubarev, Sov. Phys. Solid State 5 (3), 653 (1963).Google Scholar
  4. 4.
    A. Migault, Le Journal de Physique 32, 437 (1971).CrossRefGoogle Scholar
  5. 5.
    A. Migault, Le Journal de Physique 33, 707 (1972).CrossRefGoogle Scholar
  6. 6.
    J. P. Romain, A. Migault and J. Jacquesson, J. Phys. Chem. Solids 37, 1159 (1976).CrossRefGoogle Scholar
  7. 7.
    D. J. Pastine and J. W. Forbes, Phys. Rev. Letters 21 (23), 1582 (1968).CrossRefGoogle Scholar
  8. 8.
    D. J. O’Keeffe and D. J. Pastine, in Metallurgical Effects at High Strain Rates, R. W. Rhode, B. M. Butcher, J. R. Holland, C. H. Kannes, eds., Plenum Press, New York (1973).Google Scholar
  9. 9.
    K. A. Gschneidner, in Solid State Physics, F. Seitz and D. Turnbull, eds., Academic Press, New York (1964).Google Scholar
  10. 10.
    R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz and W. J. Carter, in High Impact Velocity Phenomena, R. Kinslow, ed., Academic Press, New York (1970).Google Scholar
  11. 11.
    D. J. Pastine, J. Geophys. Res. 75. (35), 7421 (1970).CrossRefGoogle Scholar
  12. 12.
    G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Agregate Propert ies, A Handbook, M.l.T. Press, Cambridge, Massachusetts (1971).Google Scholar
  13. 13.
    P. S. Ho and A. L. Ruoff, J. Appl. Phys. 40, 3151 (1969).CrossRefGoogle Scholar
  14. 14.
    R. E. Schmunk and C. S. Smith, J. Phys. Chem. Solids 9_, 100 (1959).Google Scholar
  15. 15.
    F. F. Voronov and L. F. Vereschagin, Phys. Metall. Metallog. 11_, 111 (1961).Google Scholar
  16. 16.
    T. Neal, Phys. Rev. B_U(12), 5172 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • J. P. Romain
    • 1
  • A. Migault
    • 1
  • J. Jacquesson
    • 1
  1. 1.Université de PoitiersPoitiers CédexFrance

Personalised recommendations