Advertisement

ZnO Varistors as Pressure Memory and Pressure Sensor

  • J. Wong
  • F. P. Bundy

Abstract

Metal oxide Varistors formed by sintering a mixture of ZnO with small additions of Bi2O3, transition, and post-transition metal oxides at high temperature constitute a novel class of electronic ceramics, which exhibit a highly non-ohmic behavior in current-voltage characteristics [1]. The functional dependence of current I on applied voltage V in the non-ohmic regime may be expressed empirically by I = KVα where α, the nonlinear exponent, can take values from 5 to 50 or higher, and K is a constant. An idealized Varistor V-I curve plotted on a log-log scale is shown in Fig. 1. This property, very similar to that of a back-to-back Zener diode, finds wide application for this class of materials as circuit pro-tectors against voltage transients and power overloads [2,3].

Keywords

Pressure Coefficient Applied Voltage Versus Zener Diode High Pressure Environment Voltage Varistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Matsuoka, Japan J. Appl. Phys. 10, 736 (1971).CrossRefGoogle Scholar
  2. 2.
    J. D. Harnden, F. D. Martzloff, W. G. Morris, and F. D. Golden, Electronics 45, 91 (1972).Google Scholar
  3. 3.
    E. C. Sakshaug, J. S. Kresge, and S. A. Miske, IEEE Trans. Power Apparatus Syst. PAS-96, 647 (1977).Google Scholar
  4. 4.
    W. G. Morris, J. Am. Ceram. Soc. 56, 360 (1973).CrossRefGoogle Scholar
  5. 5.
    J. Wong, J. Am. Ceram. Soc. 57, 357 (1974).CrossRefGoogle Scholar
  6. 6.
    J. Wong and W. G. Morris, Am. Ceram. Soc. Bull. 53, 816 (1974).Google Scholar
  7. 7.
    J. Wong, J. Appl. Phys. 46, 1653 (1975).CrossRefGoogle Scholar
  8. 8.
    J. Wong, P. Rao, and E. F. Koch, J. Appl. Phys. 46, 1827 (1975).CrossRefGoogle Scholar
  9. 9.
    W. G. Morris and J. W. Cahn in Grain Boundaries in Engineering Materials, J. L. Walter, et al., eds., Claitors, Baton Rouge, Louisiana (1975), p. 223.Google Scholar
  10. 10.
    W. G. Morris, J. Vac. Sei. Technol. 13, 926 (1976).CrossRefGoogle Scholar
  11. 11.
    L. M. Levinson and H. R. Philipp, Appl. Phys. Letter 24, 75 (1974); also J. Appl. Phys. 46, 1332 (1975).Google Scholar
  12. 12.
    J. D. Levine, Critical Reviews in Solid State Science 5, 597 (1975).Google Scholar
  13. 13.
    J. Bernasconi, H. P. Klein, B. Knecht, and S. Strassler, J. Electronic Mater 5, 473 (1976).CrossRefGoogle Scholar
  14. 14.
    J. Wong, J. Appl. Phys. 47, 4971 (1976).CrossRefGoogle Scholar
  15. 15.
    H. R. Philipp and L. M. Levinson, J. Appl. Phys. 48, 1621 (1977).CrossRefGoogle Scholar
  16. 16.
    H. R. Philipp and L. M. Levinson, J. Appl. Phys. 47, 3177 (1976).CrossRefGoogle Scholar
  17. 17.
    J. Wong and F. P. Bundy, Appl. Phys. Lett. 29, 49 (1976).CrossRefGoogle Scholar
  18. 18.
    Y. A. Atanov and E. M. Ivanova in Accurate Characterization of the High Pressure Environment, E. C. Lloyd, ed., NBS Special Publication 326 (1971), p. 49.Google Scholar
  19. 19.
    Accurate Characterization of the High Pressure Environment, E. C. Lloyd, ed., NBS Special Publication 326 (1971).Google Scholar
  20. 20.
    E. P. Lloyd and F. R. Boyd, in Accurate Characterization of the High Pressure Environment, E. C. Lloyd, ed., NBS Special Publication 326 (1971), p. 1.Google Scholar
  21. 21.
    F. P. Bundy in Accurate Characterization of the High Pressure Environment, E. C. Lloyd, ed., NBS Special Publication 326 (1971), p. 263.Google Scholar
  22. 22.
    P. W. Bridgman, Proc. Am. Acad. Arts Sei. 74, 425 (1942).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • J. Wong
    • 1
  • F. P. Bundy
    • 1
  1. 1.General Electric Corporate Research and Development SchenectadyNew YorkUSA

Personalised recommendations