Advertisement

Construction of String and Superstrings in Arbitrary Space-Time Dimensions

  • Costas Kounnas
Part of the The Subnuclear Series book series (SUS, volume 25)

Abstract

String models with space-time chiral fermions and physically relevant interactions may easily be constructed in space-time dimensions lower than ten by using different versions of the underlying twodimensional superconformal theory. The fundamental string constraints and their general solutions are presented for the case of closed strings in which all the string internal quantum numbers are carried by free periodic and antiperiodic world sheet fermions. We also present a symmetry breaking mechanism, for gauge symmetry and supersymmetry, which operates on the string level. This mechanism defines new string solutions which are characterized by a mass spectrum depending upon several breaking parameters, therefore introducing new arbitrary continuous parameters on strings.

Keywords

Gauge Group Gauge Boson String Model String Solution Free Fermion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schwarz, J.H., Physics Reports 89, 223 (1982);CrossRefGoogle Scholar
  2. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R., Phys. Rev. Lett. 54, 502 (1985); Nuci. Phys. B256, 253 (1985) and B267, 75 (1986).Google Scholar
  3. For recent review, see Green, M.B., Schwarz, J.H. and Witten, E., Superstrinq Theory, Vols. I and II, ( Cambridge University Press, 1987 ).Google Scholar
  4. 2.
    Candelas, P., Horowitz, G.T., Strominger, A. and Witten, E., Nucl. Phys. B258, 46 (1985).CrossRefGoogle Scholar
  5. 3.
    Dixon, L., Harvey, J.A., Vafa, C. and Witten, E., Nucl. Phys. B261, 678 (1985); B274, 285 (1986).Google Scholar
  6. 4.
    Narain, K.S., Phys. Lett. 169B, 41 (1986).Google Scholar
  7. 5.
    Narain, K.S., Sarmadi, M.H. and Witten, E., Nucl. Phys. B279, 369 (1987);CrossRefGoogle Scholar
  8. See also Ginsparg, P. and Vafa, C., Nuci. Phys. B289, 414 (1987).Google Scholar
  9. 6.
    Lerche, W., Lüst, D. and Schellekens, A.N., Nucl. Phys. B287, 477 (1987).CrossRefGoogle Scholar
  10. 7.
    Narain, K.S., Sarmadi, M.H. and Vafa, C., Harvard Preprint HUTP86/A089 (December 1986).Google Scholar
  11. 8.
    Antoniadis, I., Bachas, C., Kounnas C. and Windey, P., Phys. Lett. 171B, 51 (1986).Google Scholar
  12. 9.
    Kawai, H., Lewellen, D.C. and Tye, S.H.H., Phys. Rev. Lett. 57, 1832 (1986) and Nucl. Phys. B288, 1 (1987).Google Scholar
  13. 10.
    Antoniadis, I., Bachas, C.P. and Kounnas, C., Nucl. Phys. B288, 87 (1987).CrossRefGoogle Scholar
  14. See also Kounnas, C., UCB-PTH-87/21, LBL-23506, Talk at the International Workshop on Superstring, Composite Structures and Cosmology, Univ.Maryland (March 1987).Google Scholar
  15. 11.
    Antoniadis, I. and Bachas, C.P., CERN-TH.4767/87 or Ecole Poly- technique A.7920687.Google Scholar
  16. 12.
    Kawai, H., Lewellen, D.C. and Tye, S.H.H., CLNS/87/780, Cornell Preprint.Google Scholar
  17. 13.
    Schwarz, J.H., CALT-68–1426 (1987), CALT preprint, Talk at the In- ternational Workshop on Superstrings, Composite Structures and Cosmology, Univ. Maryland (March 1987 ).Google Scholar
  18. 14.
    Ferrara, S., Kounnas, C. and Porrati, M., CERN-TH. 4800/87 (corrected version); Phys. Letter B197, 135 (1987).Google Scholar
  19. 15.
    Antoniadis, I., Bachas, C. and Kounnas, C., CERN-TH. 4863/87, to appear in Phys. Lett. B.Google Scholar
  20. 16.
    Tomboulis, E., UCLA/87/TEP/29.Google Scholar
  21. 17.
    Ferrara, S., Kounnas, C. and Porrati, M., UCB-87/41 or LBL-24096 or UCLA/87/TEP/33.Google Scholar
  22. 18.
    Witten, E., in Geometry, Anomalies and Topology, W.A. Bardeen and R.A. White eds., N.Y. World Scientific 1985.Google Scholar
  23. 19.
    Axenides, M., Ellis, S.D. and Kounnas, C., UCB-PTH-87/27 or LBL2364.Google Scholar
  24. 20.
    Green, M.B. and Schwarz, J.H., Phys. Lett. 149B, 177 (1984); Phys. Lett. 151B, 21 (1985).Google Scholar
  25. 21.
    Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R., Phys. Rev. Lett. 54, 502 (1985);PubMedCrossRefGoogle Scholar
  26. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R., Nucl. Phys. B256, 253 (1985);CrossRefGoogle Scholar
  27. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R., Nucl. Phys. B267, 75 (1986).CrossRefGoogle Scholar
  28. 22.
    This was established for toroïdal constructions by Bagger, J., Nemeschansky, D., Seiberg, N. and Yankielowicz, S., Harvard Preprint HUTP-86A088 (1986).Google Scholar
  29. 23.
    Ferrara, S., Girardello, L., Kounnas, C. and Porrati, M., Phys. Lett. 192B, 368 (1987);Google Scholar
  30. Antoniadis, I., Ellis, J., Floratos, E., Nanopoulos, D.V. and Tomaras, T., Phys. Lett. 191B, 96 (1987).Google Scholar
  31. 24.
    Ferrara, S., Girardello, L., Kounnas, C. and Porrati, M., Phys. Lett. 194B, 358 (1987).Google Scholar
  32. 25.
    Arnaudon, D., Bachas, C., Rivasseau, V. and Vegreville, P., Ecole Polytechnique Preprint A771. 0387 (March 1987).Google Scholar
  33. 26.
    Dixon, L.J. and Harvey, J.A., Nucl. Phys. B274, 93 (1986).CrossRefGoogle Scholar
  34. 27.
    Alvarez-Gaumé, L., Ginsparg, P., Moore, G. and Vafa, C., Phys. Lett. 171B, 155 (1986).Google Scholar
  35. 28.
    Scherk, J. and Schwarz, J.H., Phys. Lett. 82B, 60 (1979); Nucl. Phys. B153, 61 (1979).Google Scholar
  36. Cremmer, E., Scherk, J. and Schwarz, J.H., Phys. Lett. 84B, 83 (1979).Google Scholar
  37. 29.
    Polyakov, A.M., Phys. Lett. 103B, 207 (1981); Phys. Lett. 103B, 211 (1981);Google Scholar
  38. Belavin, A.A., Polyakov, A.M. and Zamolodchikov, A.B., Nucl. Phys. B241, 333 (1984);CrossRefGoogle Scholar
  39. Friedan, D., Qiu, Z. and Shenker, S., Phys. Lett. 151B, 37 (1985);Google Scholar
  40. Friedan, D., Proceeding of the Workshop on “Unified String Theories”, Santa Barbara, 1985.Google Scholar
  41. 30.
    Bardakci, K. and Halpern, M., Phys. Rev. D3, 2493 (1971).Google Scholar
  42. 31.
    Di Vecchia, P., Knizhnik, V.G., Petersen, J.L. and Rossi, P., Nucl. Phys. B253, 701 (1985);CrossRefGoogle Scholar
  43. Goddard, P. and Olive, D., Nucl. Phys. 257, 226 (1985).CrossRefGoogle Scholar
  44. 32.
    Seiberg, N. and Witten, E., Nucl. Phys. B276, 272 (1986).CrossRefGoogle Scholar
  45. 33.
    Alvarez-Gaumé, L., Moore, G. and Vafa, C., Commun. Math. Phys. 106, 1 (1986).CrossRefGoogle Scholar
  46. 34.
    Mumford, D., Tata Lectures on Theta I and II, Birkhäuser (1983 and 1984 );Google Scholar
  47. Rauch, H.E. and Farkas, H.M., Theta Functions with Applications to Riemann Surfaces, The Williams and Wilkins Co. (1974).Google Scholar
  48. 35.
    Gliozzi, F., Scherk, J. and Olive, D., Nucl. Phys. B122, 253 (1977).CrossRefGoogle Scholar
  49. 36.
    Bergshoeff, E., Koh, I.G. and Sezgin, E., Phys. Lett. 155B, 71 (1985);Google Scholar
  50. De Roo, M. and Wagemans, P., Nucl. Phys. B262, 644 (1985).CrossRefGoogle Scholar
  51. 37.
    Ferrara, S., Kounnas, C., Porrati, M. and Zwirner, F., Phys. Lett. 194B, 366 (1987);Google Scholar
  52. Kounnas, C., Quiros, M. and Zwirner, F., UCB/PTH/87/39 or LBL24001.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Costas Kounnas
    • 1
  1. 1.Physique Théorique de l’Ecole Normale SupérieureParis cedex 05France

Personalised recommendations