Nervous System Glycoproteins

Molecular Properties and Possible Functions
  • Paul T. Kelly


One of the goals of the cellular neurobiologist is to acquire information on the structure and function of membrane components at a molecular level. Within this area of study, one of the major interests has focused on membrane glycoproteins. Plasma membranes that have most attracted the interests of neuroscientists are membranes that are structurally or functionally distinct to the nervous system, e.g., membranes that make up axons, dendrites, growing neurites, synaptic vesicles, myelin, and synaptic junctions. The brain contains a vast diversity of cell types, both neuronal and nonneuronal; cellular entities that differ on the basis of anatomical location and neurophysiological properties. Thus, studies during the past two decades have concentrated on the identification and characterization of membrane glycoproteins that may be useful in distinguishing, or are unique to, specific classes of neurons, and more recently, different types of synapses. Advances in the areas of biochemistry, cellular and subcellular fractionation, cytochemistry, and immunology have made possible new approaches that have lead to a better understanding of the molecular and functional properties of membrane glycoproteins in the nervous system. One of the ultimate goals of the neurobiologist is to dissect the synapse into its constituent molecules and to elucidate the structural and functional contribution of each, and then in a synthetic approach, to determine intermolecular relationships that will provide a comprehensive understanding of how the synapse works. The development of procedures to isolate subcellular fractions highly enriched in subsynaptic structures such as synaptic junctions and postsynaptic densities has made possible the beginning of this difficult and complex task. The ability to adapt and grow cellular elements of nervous tissues under defined culture conditions has made possible the study of specific physiological and cell-cell interaction properties of individual neurons. The ability to culture embryonic neurons now allows one to study the behavior and molecular properties of neurons as they differentiate and form synaptic connections.


Sialic Acid Acetylcholine Receptor Synaptic Vesicle Growth Cone Retinal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbs, M. T., and Phillips, J. H., 1980, Organization of the proteins of the chromaffin granule membrane, Biochim. Biophys. Acta 595: 200–221.PubMedCrossRefGoogle Scholar
  2. Aguayo, A. J., Brag, G. M., Perkins, C. S., and Duncan, I. D., 1979, Axon-sheath cell interactions in peripheral and central nervous system transplants, Soc. Neurosci. Symp. 4: 361–383.Google Scholar
  3. Allen, W. S., Otterbein, C., Varma, R., Varma, R. S., and Wardi, A. H., 1976, Nondialyzable sulfated sialoglycopeptide fractions derived from bovine heifer brain glycoproteins: Isolation, characterization, and carbohydrate—peptide linkage studies, J. Neurochem. 26: 879–885.PubMedCrossRefGoogle Scholar
  4. Anholt, R., Lindstrom, J., and Montai, M., 1980, Functional equivalence of monomeric and dimeric forms of purified acetylcholine receptors from Torpedo californica in reconstituted lipid vesicles, Eur. J. Biochem. 109: 481–487.PubMedCrossRefGoogle Scholar
  5. Barbarash, G. R., Figlewicz, D. A., and Quarles, R. H., 1981, Myelin associated glycoprotein: Purification and partial characterization, Trans. Am. Soc. Neurochem. 12: 165.Google Scholar
  6. Barondes, S. H. (ed.), 1976, Neuronal Recognition, Plenum Press, New York.Google Scholar
  7. Barondes, S. H., and Rosen, S. D., 1976, Cell surface carbohydrate-binding proteins: Role in cell recognition, in: Neuronal Recognition ( S. H. Barondes, ed.), pp. 332–356, Plenum Press, New York.CrossRefGoogle Scholar
  8. Barondes, S. H., Rosen, S. D., Simpson, D. L., and Kafka, J. A., 1974, Agglutinins of formalinized erythrocytes: Changes in activity with development of Dictyostelium discoideum and embryonic chick brain, in: Dynamics of Degeneration and Growth in Neurons ( F. K. Olson and Y. Zotterman, eds.), pp. 449–454, Pergamon Press, Elmsford, N.Y.Google Scholar
  9. Beach, R., Kelly, P. T., Babitch, J., and Cotman, C. W., 1981, Identification of myosin in isolated synaptic junctions, Brain Res. 225: 75–95.PubMedCrossRefGoogle Scholar
  10. Bittiger, H., and Schnebli, H. P., 1974, Binding of concanavalin A and ricin to synaptic junctions of rat brain, Nature (London) 249: 370–371.CrossRefGoogle Scholar
  11. Blomberg, F., Cohen, R. S., and Siekevitz, P., 1977, The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some major proteins within the structure, J. Cell Biol. 74: 204–225.PubMedCrossRefGoogle Scholar
  12. Bloom, F. E., 1970, Correlating structure and function of synaptic ultrastructure, in: The Neurosciences: Second Study Program ( E. D. Schmidt, ed.), p. 729, The Rockefeller University Press, New York.Google Scholar
  13. Bondareff, W., 1967, An intercellular substance in rat cerebral cortex: Submicroscopic distribution of ruthenium red, Anat. Rec. 157: 527–536.CrossRefGoogle Scholar
  14. Bondareff, W., and Sjöstrand, J., 1969, Cytochemistry of synaptosomes, Exp. Neurol. 24: 450–458.PubMedCrossRefGoogle Scholar
  15. Bourguignon, L. Y. W., and Singer, S. J., 1977, Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands, Proc. Natl. Acad. Sci. USA 74: 5031–5035.PubMedCrossRefGoogle Scholar
  16. Brackenbury, R., Thiery, J.-P., Rutishauser, U., and Edelman, G. M., 1977, Adhesion among neural cells of the chick embryo, J. Biol. Chem. 252: 6835–6840.PubMedGoogle Scholar
  17. Branton, D., Cohen, C. M., and Tyler, J., 1981, Interaction of cytoskeletal proteins on the human erythrocyte membrane, Cell 24: 24–32.PubMedCrossRefGoogle Scholar
  18. Bray, D., 1970, Surface movements during the growth of single explanted neurons, Proc. Natl. Acad. Sci. USA 65: 905–910.PubMedCrossRefGoogle Scholar
  19. Bray, D., 1973, Branching patterns of isolated sympathetic neurons, J. Cell Biol. 56: 702–712.PubMedCrossRefGoogle Scholar
  20. Breckenridge, W. C., Breckenridge, J. E., and Morgan, I. G., 1972, Glycoproteins of the synaptic region, Adv. Exp. Med. Biol. 32: 135–153.PubMedGoogle Scholar
  21. Brostoff, S. W., 1977, Immunological responses to myelin and components, in: Myelin ( P. Morell, ed.), pp. 415–446, Plenum Press, New York.Google Scholar
  22. Brostoff, S. W., Karkhanis, Y. D., Carlo, D. J., Reuter, W., and Eylar, E. H., 1975, Isolation and partial characterization of the major proteins of rabbit sciatic nerve myelin, Brain Res. 86: 449–458.CrossRefGoogle Scholar
  23. Brostoff, S. W., Levit, S., and Powers, J., 1977, Isolation of a disease inducing peptide from bovine PNS myelin P2 protein, Trans. Am. Soc. Neurochem. 8: 205.Google Scholar
  24. Brunngraber, E. G., 1972, Biochemistry, function and neuropathology of glycoproteins in brain tissue, in: Function and Structural Proteins of the Nervous System ( A. N. Davison, P. Mandel, and I. G. Morgan, eds.), pp. 109–133, Plenum Press, New York.Google Scholar
  25. Brunngraber, E. G., and Brown, B. D., 1964, Fractionation of brain macromolecules. II. Isolation of protein-linked sialomucopolysaccharides from subcellular, particulate fractions from rat brain, J. Neurochem. 11: 449–459.PubMedCrossRefGoogle Scholar
  26. Brunngraber, E. G., Aro, A., and Brown, B. D., 1970, Differential determination of glucosamine, galactosamine, and mannosamine in glycopeptides derived from brain tissue glycoproteins, Clin. Chim. Acta 29: 333–342.PubMedCrossRefGoogle Scholar
  27. Brunngraber, E. G., Hof, H., Susz, J., Brown, B. D., Aro, A., and Chang, I., 1973, Glycopeptides from rat brain glycoproteins, Biochim. Biophys. Acta 304: 781–796.PubMedCrossRefGoogle Scholar
  28. Burden, S. J., Sargent, P. B., and McMahan, U. T., 1979, Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve, J. Cell Biol. 82: 412–425.PubMedCrossRefGoogle Scholar
  29. Buskirk, D. R., Thiery, J.-P., Rutishauser, U., and Edelman, G. M., 1980, Antibodies to a neural cell adhesion molecule disrupt histogenesis in cultured chick retina, Nature (London) 285: 488–489.CrossRefGoogle Scholar
  30. Carlin, R. K., Grab, D. J., Cohen, R. S., and Siekevitz, P., 1980, Isolation and characterization of postsynaptic densities from various brain regions: Enrichment of different types of postsynaptic densities, J. Cell Biol. 86: 831–843.PubMedCrossRefGoogle Scholar
  31. Cartaud, J., Benedetti, E. L., Cohen, J. B., Meunier, J.-C., and Changeux, J.-P., 1973, Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata, FEBS Lett. 33: 109–113.PubMedCrossRefGoogle Scholar
  32. Chuong, C.-M., McClain, D. A., Streit, P., and Edelman, G. M., 1982, Neural cell adhesion molecules in rodent brains isolated by monoclonal antibodies with cross-species reactivity, Proc. Natl. Acad. Sci. USA 79: 4234–4238.PubMedCrossRefGoogle Scholar
  33. Churchill, L., Cotman, C., Banker, G., Kelly, P., and Shannon, L., 1976, Carbohydrate composition of central nervous system synapses: Analysis of isolated synaptic junctional complexes and postsynaptic densities, Biochim. Biophys. Acta 448: 57–72.PubMedCrossRefGoogle Scholar
  34. Claudio, T., and Raftery, M. A., 1977, Immunological comparison of acetylcholine receptors and their subunits from species of electric ray, Arch. Biochem. Biophys. 181: 484–489.PubMedCrossRefGoogle Scholar
  35. Colonnier, M., 1968, Synaptic patterns on different cell types in the different laminae of the cat visual cortex: An electron microscope study, Brain Res. 9: 268–287.PubMedCrossRefGoogle Scholar
  36. Conti-Tronconi, B. M., and Raftery, M. A., 1982, The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties, Annu. Rev. Biochem. 51: 491–530.PubMedCrossRefGoogle Scholar
  37. Cotman, C. W., and Banker, G. A., 1974, The making of a synapse, in: Reviews of Neuroscience, Vol. 1 ( S. Ehrenpreis and I. J. Kopin, eds.), pp. 1–62, Raven Press, New York.Google Scholar
  38. Cotman, C. W., and Kelly, P. T., 1980, Macromolecular architecture of CNS synapses, in: The Cell Surface and Neuronal Function ( C. W. Cotman, G. Poste, and G. L. Nicolson, eds.) pp. 505–533, Elsevier/North-Holland, Press, Amsterdam.Google Scholar
  39. Cotman, C. W., and Taylor, D., 1972, Isolation and structural studies on synaptic complexes from rat brain, J. Cell Biol. 55: 697–711.CrossRefGoogle Scholar
  40. Cotman, C. W., and Taylor, D., 1974, Localization and characterization of concanavalin A receptors in the synaptic cleft, J. Cell Biol. 62: 236–242.PubMedCrossRefGoogle Scholar
  41. Damle, V. N., and Karlin, A., 1978, Affinity labeling of one of two a-neurotoxin binding sites in acetylcholine receptor from Torpedo californica, Biochemistry 17: 2039–2045.PubMedCrossRefGoogle Scholar
  42. Davis, G., and Bloom, F. E., 1973, Isolation of synaptic junctional complexes from rat brain, Brain Res. 62: 135–153.PubMedCrossRefGoogle Scholar
  43. deSilva, N. S., Gurd, J. W., and Schwartz, C., 1979, Developmental alterations of rat brain synaptic membranes: Reaction of glycoproteins with plant lectins, Brain Res. 165: 283–293.CrossRefGoogle Scholar
  44. Di Benedetta, C., Brunngraber, E. G., Whitney, G., Brown, B. D., and Aro, A., 1969, Compositional patterns of sialofucohexosaminoglycans derived from rat brain glycoproteins, Arch. Biochem. Biophys. 131: 404–413.PubMedCrossRefGoogle Scholar
  45. Elder, J. H., Pickett, R. A., Hampton, J., and Lerner, R. A., 1977, Radioiodination of proteins in single polyacrylamide gel slices, J. Biol. Chem. 252: 6510–6515.PubMedGoogle Scholar
  46. Epstein, M., and Racker, E., 1978, Reconstitution of carbamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica, J. Biol. Chem. 253: 6660–6662.PubMedGoogle Scholar
  47. Everly, J. L., Brady, R. O., and Quarles, R. H., 1973, Evidence that the major protein in rat sciatic nerve myelin is a glycoprotein, J. Neurochem. 21: 329–334.PubMedCrossRefGoogle Scholar
  48. Figlewicz, D. A., Quarles, R. H., Johnson, D., Barbarash, G. R., and Sternberger, N. H., 1982, Biochemical demonstration of the myelin-associated glycoprotein in the peripheral nervous system, J. Neurochem. 37: 749–758.CrossRefGoogle Scholar
  49. Finne, J., and Krusius, T., 1982, Preparation and fractionation of glycopeptides, Methods Enzymol. 83: 269–277.PubMedCrossRefGoogle Scholar
  50. Finne, J., Krusius, T., Rauvala, H., and Hemminki, K., 1977, The disialosyl group of glycoproteins: Occurrences in different tissues and cellular membranes, Eur. J. Biochem. 77: 319–323.PubMedCrossRefGoogle Scholar
  51. Fischer-Colbrie, R., Schachinger, M., Zangerle, R., and Winkler, H., 1982, Dopamine 3hydroxylase and other glycoproteins from the soluble content and the membranes of adrenal chromaffin granules: Isolation and carbohydrate analysis, J. Neurochem. 38: 725–732.PubMedCrossRefGoogle Scholar
  52. Fiszer, S., and De Robertis, E., 1967, Action of Triton X-100 on ultrastructure and membrane-bound enzymes of isolated nerve endings from rat brain, Brain Res. 5: 31–44.PubMedCrossRefGoogle Scholar
  53. Froehner, S. C., and Rafto, S., 1979, Comparison of the subunits of Torpedo californica acetylcholine receptor by peptide mapping, Biochemistry 18: 301–307.PubMedCrossRefGoogle Scholar
  54. Fu, S. C., Cruz, T. F., and Gurd, J. W., 1981, Development of synaptic glycoproteins: Effect of postnatal age on the synthesis and concentration of synaptic membrane and synaptic junctional fucosyl and sialyl glycoproteins, J. Neurochem. 36: 1338–1351.PubMedCrossRefGoogle Scholar
  55. Gaze, R. M. (ed.), 1970, The Formation of Nerve Connections, Academic Press, New York.Google Scholar
  56. Giannattasio, G., Zanini, A., and Meldolesi, J., 1979, Complex carbohydrates of secretory organelles, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 327–345, Plenum Press, New York.CrossRefGoogle Scholar
  57. Giannattasio, G., Zanini, A., Rosa, P., Meldolesi, J., Margolis, R. K., and Margolis, R. U., 1980, Molecular organization of prolactin granules. III. Intracellular transport of sulfated glycosaminoglycans and glycoproteins of the bovine prolactin granule matrix, J. Cell Biol. 86: 273–279.PubMedCrossRefGoogle Scholar
  58. Glenney, J. R., Glenney, P., and Weber, K., 1982, Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit, Proc. Natl. Acad. Sci. USA 79: 4002–4005.PubMedCrossRefGoogle Scholar
  59. Gombos, G., and Zanetta, J. P., 1978, Recent methods for the separation and analysis of central nervous system glycoproteins, in: Research Methods in Neurochemistry, Vol. 4 ( N. Marks and R. Rodnight, eds.), pp. 307–343, Plenum Press, New York.Google Scholar
  60. Gonzales-Ros, J. M., Paraschos, A., and Martinez-Carrion, M., 1980, Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and electroplax lipids, Proc. Natl. Acad. Sci. USA 77: 1796–1800.CrossRefGoogle Scholar
  61. Goodrum, J. F., Bosmann, H. B., and Tanaka, R., 1979, Glycoprotein galactosyltransferase activity in synaptic junctional complexes isolated from rat forebrain, Neurochem. Res. 4: 331–337.PubMedCrossRefGoogle Scholar
  62. Gould, R. M., 1977, Incorporation of glycoproteins into peripheral nerve myelin, J. Cell Biol. 75: 326–338.PubMedCrossRefGoogle Scholar
  63. Grab, D. J., Berzins, K., Cohen, R. S., and Siekevitz, P., 1979, Presence of calmodulin in PSDs isolated from canine cerebral cortex, J. Biol. Chem. 254: 8690–8696.PubMedGoogle Scholar
  64. Gray, E. G., 1959, Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study, J. Anat. 93: 420–430.PubMedGoogle Scholar
  65. Groswald, D. E., Montgomery, P. R., and Kelly, P. T., 1982, Type I, asymmetric synapses from the rat cerebellum, Soc. Neurosci. Abstr. 116: 1Google Scholar
  66. Groswald, D. E., Montgomery, P. R., and Kelly, P. T., 1983, Synaptic junctions isolated from cerebellum and forebrain: comparisons of morphological and molecular properties, Brain Res. 278: 63–80.PubMedCrossRefGoogle Scholar
  67. Groswold, D. E., and Kelly, P. T., 1984, Evidence that a cerebellum-enriched synaptic junction glycoprotein is related to fodrin and resists extractin with Triton in a calcium-dependent manner, J. Neurochem. 42: 534–546.CrossRefGoogle Scholar
  68. Grumet, M., Rutishauser, U., and Edelman, G. M., 1982, Neural cell adhesion molecule is on embryonic muscle cells and mediates adhesion to nerve cells in vitro, Nature (London) 295: 693–695.CrossRefGoogle Scholar
  69. Gullick, W. J., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. 1. Peptide mapping, Biochemistry 20: 2173–2180.PubMedCrossRefGoogle Scholar
  70. Gurd, J. W., 1977, Identification of lectin receptors associated with rat brain PSDs, Brain Res. 126: 154–159.PubMedCrossRefGoogle Scholar
  71. Gurd, J. W., 1980, Subcellular distribution and partial characterization of the three major classes of concanavalin A receptors associated with rat brain synaptic junctions, Can. J. Biochem. 58: 941–951.PubMedCrossRefGoogle Scholar
  72. Gurd, J. W., 1982, Molecular characterization of synapses of the central nervous system, in: Molecular Approaches to Neurobiology (I. R. Brown, ed.), pp. 99–130, Academic Press, New York.Google Scholar
  73. Gurd, J. W., and Fu, S. C., 1982, Concanavalin A receptors associated with rat brain synaptic junctions are high mannose-type oligosaccharides, J. Neurochem. 39: 719–725.PubMedCrossRefGoogle Scholar
  74. Gurd, J. W., Bisson, N., and Kelly, P. T., 1983, Synaptic junction glycoproteins are phosphorylated by cyclic-AMP dependent protein kinases, Brain Res. 269: 287–296.PubMedCrossRefGoogle Scholar
  75. Gurd, J. W., Gordon-Weeks, P., and Evans, W. H., 1982, Biochemical and morphological comparisons of PSDs prepared from rat, hamster, and monkey brains by phase partitioning, J. Neurochem. 39: 1117–1124.PubMedCrossRefGoogle Scholar
  76. Hamburger, V., 1962, Specificity in neurogenesis, J. Cell. Comp. Physiol. 60 (Suppl.): 8192.Google Scholar
  77. Hausman, R. E., and Moscona, A. A., 1975, Purification and characterization of the retinaspecific cell-aggregating factor, Proc. Natl. Acad. Sci. USA 72: 916–920.PubMedCrossRefGoogle Scholar
  78. Hausman, R. E., and Moscona, A. A., 1976, Isolation of retina-specific cell-aggregating factor from membranes of embryonic neural retina tissue, Proc. Natl. Acad. Sci. USA 73: 3594–3598.PubMedCrossRefGoogle Scholar
  79. Hausman, R. E., and Moscona, A. A., 1979, Immunologic detection of retina cognin on the surface of embryonic cells, Exp. Cell Res. 119: 191–204.PubMedCrossRefGoogle Scholar
  80. Hazelbauer, G. L., and Changeux, J.-P., 1979, Reconstitution of a chemically excitable membrane, Proc. Natl. Acad. Sci. USA 71: 1479–1483.CrossRefGoogle Scholar
  81. Heuser, J. E., and Reese, T. S., 1973, Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction, J. Cell Biol. 57: 315–344.PubMedCrossRefGoogle Scholar
  82. Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, L., and Evans, L., 1979, Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol. 81: 275–300.PubMedCrossRefGoogle Scholar
  83. Hoffman, S., Sorkin, B. C., White, P. C., Brackenbury, R., Mailhammer, R., Rutishauser, U., Cunningham, B. A., and Edelman, G. M., 1982, Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes, J. Biol. Chem. 257: 7720–7729.PubMedGoogle Scholar
  84. Huber, E., König, P., Schuler, G., Aberer, W., Plattner, H., and Winkler, H., 1979, Characterization and topography of the glycoproteins of adrenal chromaffin granules, J. Neurochem. 32: 35–47.PubMedCrossRefGoogle Scholar
  85. Hughes, A. F., 1953, The growth of embryonic neurites: A study of cultures of chick neural tissue, J. Anat. 87: 150–162.PubMedGoogle Scholar
  86. Ishaque, A., Roomi, M. W., Szymanska, I., Kowalski, S., and Eylar, E. H., 1980, The Po glycoprotein of peripheral nerve myelin, Can. J. Biochem. 58: 913–921.PubMedGoogle Scholar
  87. Jacobson, M., 1970, Developmental Neurobiology, Holt, Rinehart & Winston, New York.Google Scholar
  88. Jakoi, E. R., and Marchase, R. B., 1979, Ligatin from embryonic chick neural retina, J. Cell Biol. 80: 642–650.PubMedCrossRefGoogle Scholar
  89. Jorgensen, O. S., Delouvee, A., Thiery, J.-P., and Edelman, G. M., 1980, The nervous system specific protein D2 is involved in adhesion among neurites from cultured rat ganglia, FEBS Lett. 111: 39–42.PubMedCrossRefGoogle Scholar
  90. Karlin, A., 1980, Molecular properties of nicotinic acetylcholine receptors, in: The Cell Surface and Neuronal Function ( C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), pp. 191–260, Elsevier/North-Holland, Amsterdam.Google Scholar
  91. Karlsson, E., Heilbronn, E., and Widlund, L., 1972, Isolation of the nicotinic acetylcholine receptor by biospecific chromatography on insolubilized Naja naja neurotoxin, FEBS Lett. 28: 107–111.PubMedCrossRefGoogle Scholar
  92. Kelly, P. T., and Cotman, C. W. 1977, Identification of glycoproteins and proteins at synapses in the central nervous system, J. Biol. Chem. 252: 786–793.PubMedGoogle Scholar
  93. Kelly, P. T., and Cotman, C. W., 1978, Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide, J. Cell Biol. 79: 173–183.PubMedCrossRefGoogle Scholar
  94. Kelly, P. T., and Cotman, C. W., 1981, Developmental changes in morphology and molecular composition of isolated synaptic junctional structures, Brain Res. 206: 251–271.PubMedCrossRefGoogle Scholar
  95. Kelly, P. T., and Montgomery, P. R., 1982, Subcellular localization of the 52,000 molecular weight major postsynaptic density protein, Brain Res. 233: 265–286.PubMedCrossRefGoogle Scholar
  96. Kelly, P., Cotman, C. W., Gentry, C., and Nicolson, G. L., 1976, Distribution and mobility of lectin receptors on synaptic membranes of identified neurons in the central nervous system, J. Cell Biol. 71: 487–496.PubMedCrossRefGoogle Scholar
  97. Kelly, P. T., Largen, M., and Cotman, C. W., 1979, Cyclic AMP-stimulated protein kinases at brain synaptic junctions, J. Biol. Chem. 254: 1564–1575.PubMedGoogle Scholar
  98. Kelly, P. T. McGuinness, T. L., and Greengard, P., 1983, Calcium/calmodulin-dependent phosphorylation in synaptic junctions, Soc. Neurosci. Abstr. 296. 19.Google Scholar
  99. Kelly, P. T., McGuinness, T. L., and Greengard, P., 1984, Evidence that the major PSD protein is a component of a calcium/calmodulin-dependent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 81: 945–949.PubMedCrossRefGoogle Scholar
  100. Kinders, R. J., and Johnson, T. C., 1981, Glycopeptides prepared from mouse cerebrum inhibit protein synthesis and cell division in baby hamster kidney cells, but not in their polyoma virus-transformed analogs, Exp. Cell Res. 136: 31–41.PubMedCrossRefGoogle Scholar
  101. Kinders, R. J., and Johnson, T. C., 1982, Isolation of cell-surface glycopeptides from bovine cerebral cortex that inhibit cell growth and protein synthesis in normal but not in transformed cells, Biochem. J. 206: 1–9.Google Scholar
  102. Kinders, R., Johnson, T., and Rachmeler, M., 1979, An inhibitor of protein synthesis prepared by protease treatment of mouse cerebral cortex cells, Life Sci. 24: 43–50.PubMedCrossRefGoogle Scholar
  103. Kinders, R. J., Hughes, J. V., and Johnson, T. C., 1980a, Glycopeptides from brain inhibit rates of polypeptide chain elongation, J. Biol. Chem. 255: 6368–6372.PubMedGoogle Scholar
  104. Kinders, R. J., Milenkovic, A. G., Nordin, P., and Johnson, T. C., 1980b, Characterization of cell-surface glycopeptides from mouse cerebral cortex that inhibit cell growth and protein synthesis, Biochem. J. 190: 605–614.Google Scholar
  105. Kinders, R. J., Rintoul, D. A., and Johnson, T. C., 1982, Ganglioside GMI sensitizes tumor cells to growth inhibitory glycopeptides, Biochem. Biophys. Res. Commun. 107: 663–669.PubMedCrossRefGoogle Scholar
  106. Kitamura, K., Suzuki, M., and Uyemura, K., 1976, Purification and partial characterization of two glycoproteins in bovine peripheral nerve myelin membrane, Biochim. Biophys. Acta 455: 806–816.PubMedCrossRefGoogle Scholar
  107. Kobiler, D., Beyer, E. C., and Barondes, S. H., 1978, Developmentally regulated lectins from chick muscle, brain and liver have similar chemical and immunological properties, Dev. Biol. 64: 265–272.PubMedCrossRefGoogle Scholar
  108. Krusius, T., and Finne, J., 1977, Structural features of tissue glycoproteins: Fractionation and methylation analysis of glycopeptides derived from rat brain, kidney and liver, Eur. J. Biochem. 78: 369–379.PubMedCrossRefGoogle Scholar
  109. Krusius, T., and Finne, J., 1978, Characterization of a novel sugar sequence from rat brain glycoproteins containing fucose and sialic acid, Eur. J. Biochem. 84: 395–403.PubMedCrossRefGoogle Scholar
  110. Krusius, T., Finne, J., Margolis, R. U., and Margolis, R. K., 1978, Structural features of microsomal, synaptosomal, mitochondrial and soluble glycoproteins of brain, Biochemistry 17: 3849–3854.PubMedCrossRefGoogle Scholar
  111. Lentz, T. L., and Chester, J., 1977, Localization of acetylcholine receptors in central synapses, J. Cell Biol. 72: 258–267.CrossRefGoogle Scholar
  112. Levine, L., and Willard, M., 1981, Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells, J. Cell Biol. 90: 631–643.PubMedCrossRefGoogle Scholar
  113. Lindstrom, J., Einarson, B., and Merlie, J., 1978, Immunization of rats with polypeptide chains from Torpedo acetylcholine receptor causes an autoimmune response to receptors in rat muscle, Proc. Natl. Acad. Sci. USA 75: 769–773.PubMedCrossRefGoogle Scholar
  114. Lindstrom, J., Merlie, J., and Yogeeswaran, G., 1979a, Biochemical properties of acetyl- choline receptor subunits from Torpedo californica, Biochemistry 18: 4465–4470.PubMedCrossRefGoogle Scholar
  115. Lindstrom, J., Walter, B., and Einarson, B., 1979b, Immunochemical similarities between subunits of acetylcholine receptors from Torpedo electrophorus, and mammalian muscle, Biochemistry 18: 4470–4480.CrossRefGoogle Scholar
  116. Lingappa, V. R., Katz, F. N., Lodish, H. F., and Blobel, G., 1978, A signal sequence for the insertion of a transmembrane glycoprotein: Similarities in the secretory proteins in primary structure and function, J. Biol. Chem. 253: 8667–8670.PubMedGoogle Scholar
  117. Lodish, H. F., and Rothman, J. E., 1979, The assembly of cell membranes, Sci. Am. 240: 4863.CrossRefGoogle Scholar
  118. Luttges, M. W., Kelly, P. T., and Gerren, R. A., 1976, Degenerative changes in mouse sciatic nerves: Electrophoretic and electrophysiologic characterizations, Exp. Neurol. 50: 706–733.PubMedCrossRefGoogle Scholar
  119. McClain, D. A., and Edelman, G. M., 1982, A neural cell adhesion molecule from human brain, Proc. Natl. Acad. Sci. USA 79: 6380–6384.PubMedCrossRefGoogle Scholar
  120. McIntyre, R. J., Quarles, R. H., Webster, H. deF., and Brady, R. O., 1978, Isolation and characterization of myelin-related membranes, J. Neurochem. 30: 991–1002.PubMedCrossRefGoogle Scholar
  121. McQuarrie, C., Salvaterra, P. M., De Blas, A., Routes, J., and Mahler, H. R., 1976, Studies on nicotinic acetylcholine receptors in mammalian brain, J. Biol. Chem. 251: 6335–6339.PubMedGoogle Scholar
  122. McQuarrie, C., Salvaterra, P. M., and Mahler, H. R., 1978, Studies on nicotinic acetylcholine receptors in mammalian brain, J. Biol. Chem. 253: 2743–2747.PubMedGoogle Scholar
  123. Mahler, H. R., 1979, Glycoproteins of the synapse, in: Complex Carbohyrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 165–184, Plenum Press, New York.CrossRefGoogle Scholar
  124. Marchase, R. B., Harges, P., and Jakoi, E. R., 1981, Ligatin from embryonic chick neural retina inhibits retinal cell adhesion, Dev. Biol. 86: 250–255.PubMedCrossRefGoogle Scholar
  125. Margolis, R. K., and Margolis, R. U., 1970, Sulfated glycopeptides from rat brain glycoproteins, Biochemistry 9: 4389–4396.PubMedCrossRefGoogle Scholar
  126. Margolis, R. K., and Margolis, R. U., 1979, Structure and distribution of glycoproteins and glycosaminoglycans, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 45–73, Plenum Press, New York.CrossRefGoogle Scholar
  127. Margolis, R. K., and Margolis, R. U., 1983, Glycoproteins and proteoglycans, in: Handbook of Neurochemistry (A. Lajtha, ed.), pp. 177–204, Vol. 5, 2nd ed., Plenum Press, New York.Google Scholar
  128. Margolis, R. K., Margolis, R. U., Preti, C., and Lai, D., 1975, Distribution and metabolism of glycoproteins and glycosaminoglycans in subcellular fractions of brain, Biochemistry 14: 4797–4804.PubMedCrossRefGoogle Scholar
  129. Matthieu, J.-M., Quarles, R. H., Poduslo, J. F., and Brady, R. O., 1975a, [35S]Sulfate incorporation into myelin glycoproteins. I. Central nervous system, Biochim. Biophys. Acta 392: 159–166.PubMedCrossRefGoogle Scholar
  130. Matthieu, J.-M., Everly, J. L., Brady, R. O., and Quarles, R. H., 1975b, [35S]Sulfate incorporation into myelin glycoproteins. II. Peripheral nervous system, Biochim. Biophys. Acta 392: 167–174.PubMedCrossRefGoogle Scholar
  131. Matus, A. I., 1978, The chemical synapse: Structure and function, in: Intercellular Junctions and Synapses ( J. O. Feldman, N. B. Gilula, and J. D. Pitts, eds.), pp. 99–139, Chapman & Hall, London.Google Scholar
  132. Matus, A. I., and Walters, B. B., 1975, Ultrastructure of the synaptic junctional lattice isolated from mammalian brain, J. Neurocytol. 4: 369–375.PubMedCrossRefGoogle Scholar
  133. Matus, A., DePetris, S., and Raff, M. C., 1973, Mobility of concanavalin A receptors in myelin and synaptic membranes, Nature New Biol. 244: 278–280.PubMedCrossRefGoogle Scholar
  134. Mena, E. E., and Cotman, C. W., 1982, Synaptic cleft glycoproteins contain homologous amino acid sequences, Science 216: 422–424.PubMedCrossRefGoogle Scholar
  135. Mena, E. E., Foster, A. C., Fagg, G. E., and Cotman, C. W., 1981, Identification of synapse specific components: Synaptic glycoproteins, proteins, and transmitter binding sites, J. Neurochem. 37: 1557–1566.PubMedCrossRefGoogle Scholar
  136. Michaelson, D. M., and Raftery, M. A., 1974, Purified acetylcholine receptor: Its reconstitution to a chemically excitable membrane, Proc. Natl. Acad. Sci. USA 71: 4768–4772.PubMedCrossRefGoogle Scholar
  137. Michaelis, E. K., Michaelis, M. L., and Boyarsky, L. L., 1974, High-affinity glutamic acid binding to brain synaptic membranes, Biochim. Biophys. Acta 367: 338–348.PubMedCrossRefGoogle Scholar
  138. Michaelson, D. M., Duguid, J. R., Miller, D. L., and Raftery, M. A., 1976, Reconstitution of a purified acetylcholine receptor, J. Supramol. Struct. 4: 419–425.PubMedCrossRefGoogle Scholar
  139. Mooseker, M. S., 1976, Brush border motility: Microvillar contraction in Triton-treated brush borders isolated from intestinal epithelium, J. Cell Biol. 71: 417–433.PubMedCrossRefGoogle Scholar
  140. Mooseker, M. S., and Tilney, L. G., 1975, The organization of an actin filament—membrane comples: Filament polarity and membrane attachment in the microvilli of intestinal epithelial cell, J. Cell Biol. 67: 725–743.PubMedCrossRefGoogle Scholar
  141. Morgan, I. G., Gombos, G., and Tettamanti, G., 1977, Glycoproteins and glycolipids of the nervous system, in: The Glycoconjugates ( M. I. Horowitz and W. Pigman, eds.), Vol. 1, pp. 351–383, Academic Press, New York.Google Scholar
  142. Nieto-Sampedro, M., Bussineau, C. M., and Cotman, C. W., 1982, Isolation, morphology, and protein and glycoprotein composition of synaptic junctional fractions from the brain of lower vertebrates: Antigen PSD-95 as a junctional marker, J. Neurosci. 2: 722–734.PubMedGoogle Scholar
  143. Olsen, R. W., Meunier, J.-C., and Changeux, J.-P., 1972, Progress in the purification of the cholinergic receptor protein from Electrophorus by affinity chromatography, FEBS Lett. 28: 96–100.PubMedCrossRefGoogle Scholar
  144. Patrick, J., Lindstom, J., Culp, B., and McMillan, J., 1973, Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody, Proc. Natl. Acad. Sci. USA 70: 3334–3338.PubMedCrossRefGoogle Scholar
  145. Peterson, R. G., and Gruener, R. W., 1978, Morphological localization of PNS myelin proteins, Brain Res. 152: 17–29.PubMedCrossRefGoogle Scholar
  146. Peterson, R. G., and Pease, D. C., 1972, Myelin imbedded in polymerized glutaraldehyde urea, J. Ultrastruct. Res 41: 115–132.PubMedCrossRefGoogle Scholar
  147. Peterson, R. G., and Sea, C. P., 1975, Localization of the main myelin protein in PNS, Trans. Am. Soc. Neurochem. 6: 211.Google Scholar
  148. Pfenninger, K. H., 1973, Synaptic morphology and cytochemistry, Progr. Histochem. Cytochem. 5: 1–86.Google Scholar
  149. Pfenninger, K. H., 1978, Organization of neuronal membranes, Annu. Rev. Neurosci. 1: 445–471.PubMedCrossRefGoogle Scholar
  150. Pfenninger, K. H., and Maylie-Pfenninger, M.-F., 1981a, Lectin labeling of sprouting neu- rons. I. Regional distribution of surface glycoconjugates, J. Cell Biol. 89: 536–546.PubMedCrossRefGoogle Scholar
  151. Pfenninger, K. H., and Maylie-Pfenninger, M.-F., 1981b, Lectin labeling of sprouting neurons. II. Relative movement and appearance of glycoconjugates during plasmalemmal expansion, J. Cell Biol. 89: 547–559.PubMedCrossRefGoogle Scholar
  152. Pfenninger, K. H., Ellis, L., Friedman, L. B., Johnson, M. P., and Somlo, S., 1982, Nerve growth cones isolated by subcellular fractionation from fetal rat brain, J. Cell Biol. 95: 95a.Google Scholar
  153. Prives, J., Fulton, A. B., Penman, S., Daniels, M. P., and Christian, C. N., 1982, Interaction of the cytoskeletal framework with acetylcholine receptor on the surface of embryonic muscle cells in culture, J. Cell Biol. 92: 231–236.PubMedCrossRefGoogle Scholar
  154. Quarles, R. H., 1976, Effects of Pronase and neuraminidase treatment on a myelin-associated glycoprotein in developing brain, Biochem. J. 156: 143–150.PubMedGoogle Scholar
  155. Quarles, R. H., 1979, Glycoproteins in myelin and myelin-related membranes, in: Complex Carbohydrates of Nervous Tissue (R. U. Margolis and R. K. Margolis, eds.), pp. 209233, Plenum Press, New York.Google Scholar
  156. Quarles, R. H., and Everly, J. L., 1977, Glycopeptide fractions prepared from purified central and peripheral rat myelin, Biochim. Biophys. Acta 466: 176–186.PubMedCrossRefGoogle Scholar
  157. Quarles, R. H., and Pasnak, C. F., 1977, A rapid procedure for selectively isolating the major glycoprotein from purified rat brain myelin, Biochem. J. 163: 635–637.PubMedGoogle Scholar
  158. Quarles, R. H., Everly, J. L., and Brady, R. O., 1973, Evidence for the close association of a glycoprotein with myelin in rat brain, J. Neurochem. 21: 1177–1191.PubMedCrossRefGoogle Scholar
  159. Quarks, R. H., Foreman, C. F., Poduslo, J. F., and McIntyre, L. J., 1977, Interactions of myelin-associated glycoproteins with immoblized lectins, Trans. Am. Soc. Neurochem. 8: 201.Google Scholar
  160. Quarles, R. H., Johnson, D., Brady, R. O., and Sternberger, N. H., 1981, Preparation and characterization of antisera to the myelin-associated glycoprotein, Neurochem. Res. 6: 1115–1127.PubMedCrossRefGoogle Scholar
  161. Raftery, M. A., 1973, Isolation of acetylcholine receptor—a-bungarotoxin complexes from Torpedo californica electroplax, Arch. Biochem. Biophys. 154: 270–276.PubMedCrossRefGoogle Scholar
  162. Raftery, M. A., Hunkapiller, M. W., Strader, C. D., and Hood, L. E., 1980, Acetylcholine receptor: Complex of homologous subunits, Science 208: 1454–1457.PubMedCrossRefGoogle Scholar
  163. Rambourg, A., and Leblond, C. P., 1967, Electron microscopic observations on the carbohydrate-rich coat present at the surface of cells in the rat, J. Cell Biol 32: 27–53.PubMedCrossRefGoogle Scholar
  164. Ramón y Cajal, S., 1905, Trab. Lab. Invest. Biol. Univ. Madrid 4:219, in: Studies on Vertebrate Neurogenesis (L. Guth, transl.), pp. 5–70, Thomas, Springfield, Ill.Google Scholar
  165. Ramon y Cajal, S., 1908, Anat. Anz. 32:1–65, in: Studies on Vertebrate Neurogenesis (L. Guth, transl.), pp. 71–116, Thomas, Springfield, Ill.Google Scholar
  166. Roomi, M. W., and Eylar, E. H., 1978, Isolation of a product from the trypsin-digested glycoprotein of sciatic nerve myelin, Biochim. Biophys. Acta 536: 122–133.PubMedGoogle Scholar
  167. Roomi, M. W., Ishaque, A., Kahn, N. R., and Eylar, E. H., 1978a, Glycoproteins and albumin in peripheral nerve myelin, J. Neurochem. 31: 375–380.PubMedCrossRefGoogle Scholar
  168. Roomi, M. W., Ishaque, A., Khan, N. R., and Eylar, E. H., 1978b, The Po protein: The major glycoprotein of peripheral nerve myelin, Biochim. Biophys. Acta 536: 112–121.PubMedGoogle Scholar
  169. Rostas, J. A. P., Kelly, P. T., Pesin, R. H., and Cotman, C. W., 1979, Protein and glycoprotein composition of synaptic junctions prepared from discrete synaptic regions and different species, Brain Res. 168: 151–167.PubMedCrossRefGoogle Scholar
  170. Rutishauser, U., Thiery, J.-P., Brackenbury, R., Sela, B.-A., and Edelman, G. M., 1976, Mechanisms of adhesion among cells from neural tissues of the chick embryo, Proc. Natl. Acad. Sci. USA 73: 577–581.PubMedCrossRefGoogle Scholar
  171. Rutishauser, U., Gall, W., and Edelman, G. M., 1978, Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia, J. Cell Biol. 79: 382–393.PubMedCrossRefGoogle Scholar
  172. Rutishauser, U., Hoffman, S., and Edelman, G. M., 1982, Binding properties of a cell adhesion molecule from neural tissue, Proc. Natl. Acad. Sci. USA 79: 685–689.PubMedCrossRefGoogle Scholar
  173. Saitoh, T., Oswald, R., Wennogle, L. P., and Changeux, J.-P., 1980, Conditions for the selective labeling of the acetylcholine receptor by the covalent non-competitive blocker 5-azido-[3H]trimethisoquin, FEBS Lett. 116: 30–36.PubMedCrossRefGoogle Scholar
  174. Salvaterra, P. M., Gurd, J. M., and Mahler, H. R., 1977, Interactions of the nicotinic acetylcholine receptor from rat brain with lectins, J. Neurochem. 29: 345–348.PubMedCrossRefGoogle Scholar
  175. Sato, S., Quarles, R. H., and Brady, R. O., 1982, Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain, J. Neurochem. 39: 97–105.PubMedCrossRefGoogle Scholar
  176. Schiebler, W., and Hucho, F., 1978, Membranes rich in acetylcholine receptor: Characterization and reconstitution to excitable membranes from exogenous lipids, Eur. J. Biochem. 85: 55–63.PubMedCrossRefGoogle Scholar
  177. Schlessinger, J., Elson, E. L., Webb, W. W., Yahara, I., Rutishauser, U., and Edelman, G. M., 1977, Receptor diffusion on cell surfaces modulated by locally bound concanavalin A, Proc. Natl. Acad. Sci. USA 74: 1110–1114.PubMedCrossRefGoogle Scholar
  178. Schmidt, J., and Raftery, M. A., 1972, Use of affinity chromatography of acetylcholine receptor purification, Biochem. Biophys. Res. Commun 49: 572–578.PubMedCrossRefGoogle Scholar
  179. Sea, C. P., and Peterson, R. G., 1975, Ultrastructure and biochemistry of myelin after isoniazid-induced nerve degeneration in rats, Exp. Neurol. 48: 252–260.PubMedCrossRefGoogle Scholar
  180. Simpson, D. L., Thorne, D. R., and Loh, H. H., 1976, Sulfated glycoproteins, glycolipids and glycosaminoglycans from synaptic plasma and myelin membranes: Isolation and characterization of sulfated glycopeptides, Biochemistry 15: 5449–5457.PubMedCrossRefGoogle Scholar
  181. Simpson, D. L., Thorne, D. R., and Loh, H. H., 1977, Developmentally regulated lectin in neonatal rat brain, Nature (London) 266: 367–369.CrossRefGoogle Scholar
  182. Simpson, D. L., Thorne, D. R., and Loh, H. H., 1978, Lectins: Endogenous carbohydrate-binding proteins from vertebrate tissues: Functional roles in recognition processes, Life Sci. 22: 727–748.PubMedCrossRefGoogle Scholar
  183. Singh, H., Silberlicht, I., and Sinch, J., 1978, A comparative study of the polypeptides of mammalian peripheral nerve myelin, Brain Res. 144: 303–311.PubMedCrossRefGoogle Scholar
  184. Slater, E. P., Zaremba, S., and Hogue-Angeletti, R. A., 1981, Purification of membrane-bound dopamine ß-monooxygenase from chromaffin granules: Relation to soluble dopamine (3-monooxygenase, Arch. Biochem. Biophys. 211: 288–296.PubMedCrossRefGoogle Scholar
  185. Spencer, P. S., 1979, Neuronal regulation of myelinating cell function, (Soc. Neurosci. Symp. 4: 275–321.Google Scholar
  186. Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA 50: 703–707.PubMedCrossRefGoogle Scholar
  187. Stefanovic, V., Mandel, P., and Rosenberg, A., 1975, Activation of acetyl-and butyrylcholinesterase by enzymatic removal of sialic acid from intact neuroblastoma and astroblastoma cells in culture, Biochemistry 14: 5257–5260.PubMedCrossRefGoogle Scholar
  188. Sternberger, N. H., Quarles, R. H., Itoyama, Y., and Webster, H. D., 1979, Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat, Proc. Natl. Acad. Sci. USA 76: 1510–1514.PubMedCrossRefGoogle Scholar
  189. Stromer, M. H., and Goll, D. E., 1972, Studies on purified alpha-actinin. II. Electron microscopic studies on the competitive binding of alpha-actinin and tropomyosin to Z-line extracted myofibrils, J. Mol. Biol. 67: 489–494.PubMedCrossRefGoogle Scholar
  190. Thiery, J.-P., Brackenbury, R., Rutishauser, U., and Edelman, G. M., 1977, Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina, J. Biol. Chem. 252: 6841–6845.PubMedGoogle Scholar
  191. Trapp, B. D., Itoyama, Y., Sternberger, N. H., Quarles, R. H., and Webster, H. F., 1981, Immunocytochemical localization of Po protein in Golgi complex membranes and myelin of developing rat Schwann cells, J. Cell Biol. 90: 1–6.PubMedCrossRefGoogle Scholar
  192. Tzartos, S. J., and Lindstrom, J. M., 1980, Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits, Proc. Natl. Acad. Sci. USA 77: 755–759.PubMedCrossRefGoogle Scholar
  193. Tzartos, S. J., Rand, D. E., Einarson, B. L., and Lindstrom, J. M., 1981, Mapping of surface structures of Electrophorus acetylcholine receptor using monoclonal antibodies, J. Biol. Chem. 256: 8635–8645.PubMedGoogle Scholar
  194. Van der Loos, H., 1963, The fine structure of synapses in the cerebral cortex, Z. Zellforsch. Mikrosk. Anat. 60: 815–824.CrossRefGoogle Scholar
  195. Vandlen, R., Wu, W. C.-S., Eisenach, J. C., and Raftery, M. A., 1979, Studies of the composition of purified Torpedo cahfornica acetylcholine receptor and of its subunits, Biochemistry 18: 1845–1854.PubMedCrossRefGoogle Scholar
  196. Van Heyningen, S., 1974, Cholera toxin: Interaction of its subunits with ganglioside GM,, Science 183: 656–657.CrossRefGoogle Scholar
  197. Vincendon, G., Gombos, G., and Morgan, I. G., 1973, The interest of studying glycoproteins in the central nervous system, in: Methodologie de la Structure et du Metabolisme des Glycoconjugates (Glycoproteins et Glycolipids), Vol. 2, CNRS, Paris.Google Scholar
  198. von Wedel, R. J., Carlson, S. S., and Kelly, R. B., 1981, Transfer of synaptic vesicle antigens to the presynaptic plasma membrane during exocytosis, Proc. Natl. Acad. Sci. USA 78: 1014–1018.CrossRefGoogle Scholar
  199. Waehneldt, T. V., Matthieu, J.-M., and Neuhoff, V., 1977, Characterization of a myelin related fraction (SN 4) isolated from rat forebrain at two developmental stages, Brain Res. 138: 29–43.PubMedCrossRefGoogle Scholar
  200. Weinberg, C. B., Sanes, J. R., and Hall, Z. W., 1981, Formation of neuromuscular junctions in adult rats: Accumulation of acetylcholine receptors, acetylcholinesterase, and components of synaptic basal lamina, Deg. Biol. 84: 255–266.CrossRefGoogle Scholar
  201. Weiss, P., 1947, The problem of specificity in growth and development, Yale J. Biol. Med., 19: 235–259.PubMedGoogle Scholar
  202. Wenthold, R. J., Mahler, H. R., and Moore, W. J., 1974, Properties of rat brain acetyl-cholinesterase, J. Neurochem. 22: 945–949.CrossRefGoogle Scholar
  203. Wiggins, R. C., Benjamin, J. A., and Morell, P., 1975, Appearance of myelin proteins in rat sciatic nerve during development, Brain Res. 89: 99–106.PubMedCrossRefGoogle Scholar
  204. Winkler, H., and Westhead, E., 1980, The molecular organization of adrenal chromaffin granules, Neuroscience 5: 1803–1823.PubMedCrossRefGoogle Scholar
  205. Wood, J. G., and Dawson, R. M. C., 1973, A major myelin glycoprotein of sciatic nerve, J. Neurochem. 21: 717–719.PubMedCrossRefGoogle Scholar
  206. Wood, J. G., and Dawson, R. M. C., 1974a, Some properties of a major structural glycoprotein of sciatic nerve, J. Neurochem. 22: 627–630.PubMedCrossRefGoogle Scholar
  207. Wood, J. G., and Dawson, R. M. C., 1974b, Lipid and protein changes in sciatic nerve during Wallerian degeneration, J. Neurochem. 22: 631–635.PubMedCrossRefGoogle Scholar
  208. Wood, J. G., and Engel, E. L., 1976, Peripheral myelin glycoproteins and myelin fine structure during development of rat sciatic nerve, J. Neurocytol. 5: 605–615.PubMedCrossRefGoogle Scholar
  209. Wood, J. G., and McLaughlin, B. J., 1975, The visualization of concanavalin-A binding sites in the intraperiod line of rat sciatic nerve myelin, J. Neurochem. 24: 233–235.PubMedCrossRefGoogle Scholar
  210. Zanetta, J. P., Sarlieve, L. L., Mandel, P., Vincendon, G., and Gombos, G., 1977, Fractionation of glycoproteins associate to adult rat brain myelin fractions, J. Neurochem. 29: 827.PubMedCrossRefGoogle Scholar
  211. Zanetta, J. P., Reeber, A., and Vincendon, G., 1981, Glycoproteins from adult rat brain synaptic vesicles: Fractionation on four immobilized lectins, Biochim. Biophys. Acta 670: 393–400.PubMedGoogle Scholar
  212. Zanini, A., Giannattasio, G., Nussdorfer, G., Margolis, R. K., Margolis, R. U., and Meldolesi, J., 1980, Molecular organization of prolactin granules. II. Characterization of glycosaminoglycans and glycoproteins of the bovine prolactin matrix, J. Cell Biol. 86: 260–272.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Paul T. Kelly
    • 1
  1. 1.Division of BiologyKansas State UniversityManhattanUSA

Personalised recommendations