Carbohydrate Structure, Biological Recognition, and Immune Function

  • Christopher L. Reading


Complex carbohydrates are favorable candidates for encoding biological information because of the large number of structures possible in relatively short oligosaccharide sequences. A great variety of complex carbohydrate structures exist in nature, with ample diversity to serve as receptors in recognition phenomena. The reader is referred to reviews for consideration of the carbohydrate structures found in glycolipids (Sweeley et al., 1978), glycoproteins (Walborg, 1978; Sharon and Lis, 1980; Berger et al., 1982) and glycosaminoglycans (Ginsburg and Neufeld, 1969; Heath 1971).


Sialic Acid Blood Group Migration Inhibitory Factor Carbohydrate Structure Sialic Acid Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achord, D. T., Brot, F. E., and Sly, W. S., 1977, Inhibition of the rat clearance system for agalacto-orosomucoid by yeast mannans and by mannose, Biochem. Biophys. Res. Commun. 77: 409–415.PubMedCrossRefGoogle Scholar
  2. Achord, D. T., Brot, F. E., Bell, C. E., and Sly, W. S., 1978, Human 3-glucuronidase: ln vivo clearance and in vitro uptake by a glycoprotein recognition system on reticuloendothelial cells, Cell 15: 269–278.PubMedCrossRefGoogle Scholar
  3. Acton, R. T., Bennett, J. C., Evans, E. E., and Schrohenloher, R. E., 1969, Physical and chemical characterization of an oyster hemagglutinin, J. Biol. Chem. 214: 4128–4135.Google Scholar
  4. Ades, E. W., Hinson, A., and Decker, J. M., 1981, Effector cell sensitivity to sugar moieties. I. Inhibition of human natural killer cell activity by monosaccharides, Immunobiology 160: 248–258.PubMedCrossRefGoogle Scholar
  5. Allen, A., and Minnikin, S. M., 1975, The binding of the mucoprotein from gastric mucus to cells in tissue culture and the inhibition of cell adhesion, J. Cell Sci. 17: 617–631.PubMedGoogle Scholar
  6. Alley, C. D., and Snodgrass, M. J., 1978, Effect of inoculation with neuraminidase-treated tumor cells on macrophage cytotoxicity in vitro, Cancer Res. 38: 2332–2338.PubMedGoogle Scholar
  7. Alving, C. R., and Richards, R. L., 1977, Immune reactivities of antibodies against glycolipids. II. Comparative properties, using liposomes, of purified antibodies against mono, di, and trihexosyl ceramide haptens, Immunochemistry 14: 383–389.PubMedCrossRefGoogle Scholar
  8. Aminoff, D., Bell, W. C., Fulton, I., and lngebrigtsen, N., 1976, Effect of sialidase on the viability of erythrocytes in circulation, Am. J. Hematol. 1: 419–432.PubMedCrossRefGoogle Scholar
  9. Amsden, A., Ewan, V., Yoshida, T., and Cohen, S., 1978, Studies on cellular receptors for lymphokines. I. Interactions of chemotactic factors with monosaccharides, J. Immunol. 120: 542–549.PubMedGoogle Scholar
  10. Anderson, A. O., and Anderson, N. D., 1976, Lymphocyte emigration from high endothelial venules in rat lymph nodes, Immunology 31: 731–748.PubMedGoogle Scholar
  11. Ankel, H., Krishnamurti, C., Besancon, F., Stefanos, S., and Falcoff, E., 1980, Mouse fibroblast (type I) and immune (type 11) interferons: Pronounced differences in affinity for gangliosides and in antiviral and antigrowth effects on mouse leukemia L-1210R cells, Proc. Natl. Acad. Sci. USA 77: 2528–2532.PubMedCrossRefGoogle Scholar
  12. Anstee, D. J., 1981, The blood group MNSs-active sialoglycoproteins, Semin. Hematol. 18: 13–31.PubMedGoogle Scholar
  13. Apgar, J. R., and Cresswell, P., 1982, Expression of cell surface lectins on activated lymphoid cells, Eur. J. Immunol. 12: 570–576.PubMedCrossRefGoogle Scholar
  14. Artzt, K., and Bennett, D., 1975, Analogies between embryonic (T/t) antigens and adult major histocompatibility (H-2) antigens, Nature (London) 256: 545–547.CrossRefGoogle Scholar
  15. Artzt, K., Dubois, P., Bennett, D., Condamine, H., Babinet, C., and Jacob, F., 1973, Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture, Proc. Natl. Acad. Sci. USA 70: 2988–2992.PubMedCrossRefGoogle Scholar
  16. Artzt, K., Bennett, D., and Jacob, F., 1974, Primitive teratocarcinoma cells express a differentiation antigen specified by a gene at the T-locus in the mouse, Proc. Natl. Acad. Sci. USA 71: 811–814.PubMedCrossRefGoogle Scholar
  17. Asao, M. I., and Oppenheimer, S. B., 1979, Inhibition of cell aggregation by specific carbohydrates, Exp. Cell Res. 120: 101–110.PubMedCrossRefGoogle Scholar
  18. Ashall, F., Bramwell, M. E., and Harris, H., 1982, A new marker for human cancer cells. I. The Ca antigen and the CA1 antibody, Lancet 2: 1–6.PubMedCrossRefGoogle Scholar
  19. Ashwell, G., and Morell, A. G., 1974, The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol. 41: 99–128.PubMedGoogle Scholar
  20. Atkinson, P. H., and Hakimi, J., 1980, Alterations in glycoproteins of the cell surface, in: The Biochemistry of Glycoproteins and Proteoglycans ( W. J. Lennarz, ed.), pp. 191–239, Plenum Press, New York.CrossRefGoogle Scholar
  21. Baba, T., Yoshida, T., and Cohen, S., 1979, Suppression of cell-mediated immune reactions by monosaccharides, J. Immunol. 122: 838–841.PubMedGoogle Scholar
  22. Baker, A. P., Smith, W. J., and Holden, D. A., 1980, Development of an immunological response and changes in the activity of an ectogalactosyltransferase, Cell. Immunol. 51: 186–191.PubMedCrossRefGoogle Scholar
  23. Balazs, E. A., and Jacobson, B., 1966, Interaction of amino sugars and amino sugar-containing macromolecules with viruses, cells, and tissues, in: The Amino Sugars, Vol. IIB ( E. A. Balazs and R. W. Jeanloz, eds.), pp. 361–395, Academic Press, New York.Google Scholar
  24. Barondes, S. H., 1980, Endogenous cell-surface lectins: Evidence that they are cell adhesion molecules, in: The Cell Surface: Mediator of Developmental Processes ( N. K. Wessels and S. Subtelny, eds.), pp. 349–363, Academic Press, New York.Google Scholar
  25. Barondes, S. H., 1981, Lectins: Their multiple endogenous cellular functions, Annu. Rev. Biochem. 50: 207–231.PubMedCrossRefGoogle Scholar
  26. Bar-Shavit, Z., Ofek, I., Goldman, R., Mirelman, D., and Sharon, N., 1977, Mannose residues on phagocytes and receptors for the attachment of Escherichia coli and Salmonella typhi, Biochem. Biophys. Res. Commun. 78: 455–460.PubMedCrossRefGoogle Scholar
  27. Bar-Shavit, Z., Stabinsky, Y., Fridkin, M., and Goldman, R., 1979, Tuftsin—macrophage interaction: Specific binding and augmentation of phagocytosis, J. Cell Physiol. 100: 562.CrossRefGoogle Scholar
  28. Basten, A., Croft, S., Parish, C. R., and McKenzie, I. F. C., 1980, Transfer of cell mediated immunity with cell free leukocyte extracts. III. Demonstration of IA antigens in the specific component, Cell. Immunol. 56: 440–451.PubMedCrossRefGoogle Scholar
  29. Basu, M., Basu, S., Shanabruch, W. G., Moskal, J. R., and Evans, C. H., 1976, Lectin and cholera toxin binding to guinea pig tumor (104c1) cell surfaces before and after glycosphingolipid incorporation, Biochem. Biophys. Res. Commun. 71: 385–392.PubMedCrossRefGoogle Scholar
  30. Baynes, J. W., and Wold, F., 1976, Effect of glycosylation on the in vivo circulating half-life of ribonuclease, J. Biol. Chem. 251: 6016–6024.PubMedGoogle Scholar
  31. Benacerraf, B., and Katz, D. H., 1975, The nature and function of histocompatibility-linked immune response genes, in: Immunogenetics and Immunodeficiency ( B. Benacerraf, ed.), pp. 117–177, University Park Press, Baltimore.CrossRefGoogle Scholar
  32. Bennett, M., Kumar, V., Levy, E., and Rodday, P., 1980, Genetic resistance to tumors: Roles of marrow-dependent and -independent cells, in: Genetic Control of Natural Resistance to Infection and Malignancy ( E. Skamene, P. A. L. Kongshavn, and M. Landy, eds.), pp. 431–443, Academic Press, New York.Google Scholar
  33. Bentwich, Z., Douglas, S. D., Skutelsky, E., and Kunkel, H. G., 1973, Sheep red cell binding to human lymphocytes treated with neuraminidase: Enhancement of T cell binding and identification of a subpopulation of B cells, J. Exp. Med. 137: 1532–1537.PubMedCrossRefGoogle Scholar
  34. Berger, E. G., Buddecke, E., Kamerling, J. P., Kobata, A., Paulson, J. C., and Viegenthart, J. F. G., 1982, Structure, biosynthesis, and functions of glycoprotein glycans, Experientia 38: 1129–1162.PubMedCrossRefGoogle Scholar
  35. Berney, S. N., and Gesner, B. M., 1970, The circulatory behaviour of normal and enzyme altered thymocytes in rats, Immunology 18: 681–691.PubMedGoogle Scholar
  36. Besancon, F., and Ankel, H., 1976, Specificity and reversibility of interferon ganglioside interaction, Nature (London) 259: 576–578.CrossRefGoogle Scholar
  37. Beyer, E. C., Tokuasu, K. T., and Barondes, S. H., 1979, Localization of an endogenous lectin in chicken liver, intestine, and pancreas, J. Cell Biol. 82: 565–571.PubMedCrossRefGoogle Scholar
  38. Black, P. L., Vitetta, E. S., Forman, J., Kang, C.-Y., May, R. D., and Uhr, J. W., 1981, Role of glycosylation in the H-2-restricted cytolysis of virus-infected cells, Eur. J. Immunol. 11: 48–55.PubMedCrossRefGoogle Scholar
  39. Blanchard, D., Cartron, J.-P., Fournet, B., Montrevil, J., van Halbeek, H., and Vliegenthart, J. F. G., 1983, Primary structure of the oligosaccharide determinant of blood group Cad specificity, J. Biol. Chem. 268: 7691–7695.Google Scholar
  40. Bloch, R., Maccecchini, M. L., Jumblatt, R., Buttrick, P., and Burger, M. M., 1977, Sugar-specific antibodies reactive towards cell-surface carbohydrates, Eur. J. Biochem. 80: 261–266.PubMedCrossRefGoogle Scholar
  41. Blumenford, O. O., and Adamany, A. M., 1978, Structural polymorphism within the amino-terminal region of MM, NN, and MN glycoproteins (glycophorins) of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 75: 2727–2731.CrossRefGoogle Scholar
  42. Boldt, D. H., and Armstrong, J. P., 1976, Rosette formation between human lymphocytes and sheep erythrocytes: Inhibition of rosette formation by specific glycopeptides, J. Clin. Invest. 57: 1068–1078.PubMedCrossRefGoogle Scholar
  43. Boldt, D. H., MacDermott, R. P., and Jorolan, E. P., 1975, Interaction of plant lectins with purified human lymphocyte populations: Binding characteristics and kinetics of proliferation, J. Immunol. 114: 1532–1536.PubMedGoogle Scholar
  44. Bolwell, G. P., Callow, J. A., and Evans, L. V., 1980, Fertilization in brown algae. III. Preliminary characterization of putative gamete receptors from eggs and sperm of Fucus serratus, J. Cell Sci 43: 209–224.PubMedGoogle Scholar
  45. Borella, L., and Sen, L., 1975, E receptors on blasts from untreated acute lymphocytic leukemia (ALL): Comparison of temperature dependence of E rosettes formed by normal and leukemic lymphoid cells, J. Immunol. 114: 187–190.PubMedGoogle Scholar
  46. Bortolussi, R., Ferrieri, P., Bjorksten, B., and Quie, P. G., 1979, Capsular K1 polysaccharide of Escherichia coli: Relationship to virulence in newborn rats and resistance to phagocytosis, Infect. Immun. 25: 293–298.PubMedGoogle Scholar
  47. Bosmann, H. B., 1972a, Platelet adhesiveness and aggregation. II. Surface sialic acid, glycoprotein: N-acetylneuraminic acid transferase and neuraminidase of human blood platelets, Biochim. Biophys. Acta 279: 456–474.PubMedCrossRefGoogle Scholar
  48. Bosmann, H. B., 1972b, Sialyl transferase activity in normal and RNA- and DNA-virus transformed cells utilizing desialyzed, trypsinized cell plasma membrane external surface glycoproteins as exogeneous acceptors, Biochem. Biophys. Res. Commun. 49: 1256–1262.PubMedCrossRefGoogle Scholar
  49. Bowles, D. J., and Kauss, H., 1976, Isolation of a lectin from liver plasma membrane and its binding to cellular membrane receptors in vitro, FEBS Lett. 66: 16–19.PubMedCrossRefGoogle Scholar
  50. Brady, R. O., and Fishman, P. H., 1974, Biosynthesis of glycolipids in virus-transformed cells, Biochim. Biophys. Acta 355: 121–148.PubMedGoogle Scholar
  51. Brown, J. C., and Colling, R. G., 1982, Properties of cold agglutinin and group carbohydrate-specific antibodies isolated from group C streptococcal antisera, Mol. Immunol. 19: 457–465.PubMedCrossRefGoogle Scholar
  52. Brown, J. C., and Hunt, R. C., 1978, Lectins, Int. Rev. Cytol. 52: 277–349.PubMedCrossRefGoogle Scholar
  53. Brown, R. C., Bass, H., and Coombs, J. P., 1975, Carbohydrate binding proteins involved in phagocytosis by Acanthamoeba, Nature (London) 254: 434–435.CrossRefGoogle Scholar
  54. Brown, T. L., Henderson, L. A., Thorpe, S. R., and Baynes, J. W., 1978, The effect of amannose-terminal oligosaccharides on the survival of glycoproteins in the circulation, Arch. Biochem. Biophys. 188: 418–428.PubMedCrossRefGoogle Scholar
  55. Butcher, E. C., Scollay, R. G., and Weissman, I. L., 1979a, Lymphocyte adherence to high endothelial venules: Characterization of a modified in vitro assay, and examination of the binding of syngeneic and allogeneic lymphocyte populations, J. Immunol. 123: 1996–2003.PubMedGoogle Scholar
  56. Butcher, E. C., Scollay, R., and Weissman, I., 1979b, Evidence of continuous evolutionary changes in structures mediating adherence of lymphocytes to specialized venules, Nature (London) 280: 496–498.CrossRefGoogle Scholar
  57. Carver, J. P., and Grey, A. A., 1981, Determination of glycopeptide primary structure by 360-MHz proton magnetic resonance spectroscopy, Biochemistry 20: 6607–6616.PubMedCrossRefGoogle Scholar
  58. Catovsky, D., Cherchi, M., Okos, A., Hedge, U., and Galton, A. G., 1976, Mouse red-cell rosettes in B-lymphoproliferative disorders, Br. J. Haematol. 33: 173–177.PubMedCrossRefGoogle Scholar
  59. Cauldwell, C. B., Henkart, P., and Humphreys, T., 1973, Physical properties of sponge aggregation factor: A unique proteoglycan complex, Biochemistry 12: 3051–3055.PubMedCrossRefGoogle Scholar
  60. Ceri, H., Kobiler, D., and Barondes, S. H., 1981, Heparin-inhibitable lectin: Purification from chicken liver and embryonic chicken muscle, J. Biol. Chem. 256: 390–394.PubMedGoogle Scholar
  61. Cheng, C. C., and Bennett, D., 1980, Nature of the antigenic determinants of T locus antigens, Cell 19: 537–543.PubMedCrossRefGoogle Scholar
  62. Childs, R. A., Kapadia, A., and Feizi, T., 1980, Expression of blood group I and i active carbohydrate sequences on cultured human and animal cell lines assessed by radioimmunoassays with monoclonal cold agglutinins, Eur. J. Immunol. 10: 379–384.PubMedCrossRefGoogle Scholar
  63. Chipowsky, S., Lee, C., and Roseman, S., 1973, Adhesion of cultured fibroblasts to insoluble analogues of cell-surface carbohydrates, Proc. Natl. Acad. Sci. USA 70: 2309–2312.PubMedCrossRefGoogle Scholar
  64. Cisar, J. O., Kolenbrander, P. E., and McIntire, F. C., 1979, Specificity of coaggregation reaction between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii, Infect. Immun. 24: 742–752.PubMedGoogle Scholar
  65. Cohen, E. (ed.), 1974, Biomedical Perspectives of Agglutinins of Invertebrate and Plant Origins, Ann. N.Y. Acad. Sci. 234.Google Scholar
  66. Cohen, E., Rozenberg, M., and Massaro, E. J., 1974, Agglutinins of Limulus polyphemus (horseshoe crab) and Birgus latro (coconut crab), Ann. N.Y. Acad. Sci. 234: 28–33.PubMedCrossRefGoogle Scholar
  67. Conlon, P. J., Henney, C. S., and Gillis, S., 1982, Cytokine-dependent thymocyte responses: Characterization of IL 1 and IL 2 target subpopulations and mechanism of action, J. Immunol. 128: 797–801.PubMedGoogle Scholar
  68. Constantopoulos, A., and Najjar, V. A., 1972, Tuftsin, a natural and general phagocytosis stimulating peptide affecting macrophages and polymorphonuclear granulocytes, Cytobios 6: 97–100.Google Scholar
  69. Constantopoulos, A., and Najjar, V. A., 1973, The requirement for membrane sialic acid in the stimulation of phagocytosis by the natural tetrapeptide, tuftsin, J. Biol. Chem. 248: 3819–3822.PubMedGoogle Scholar
  70. Cook, R. G., Vitetta, E. S., Uhr, J. W., and Capra, J. D., 1980, The I region of the murine major histocompatibility complex: Genetics and structure, in: Membranes, Receptors and the Immune Response ( E. P. Cohen and H. Kohler, eds.), pp. 95–105; Liss, New York.Google Scholar
  71. Cooper, E. L., Lemmi, C. A. E., and Moore, T. C., 1974, Agglutinins and cellular immunity in earthworms, Ann. N.Y. Acad. Sci. 234: 34–50.PubMedCrossRefGoogle Scholar
  72. Cooper, H. S., and Haesler, W. E., 1978, Blood group substances as tumor antigens in the distal colon, Am. J. Clin. Pathol. 69: 594–598.PubMedGoogle Scholar
  73. Cooper, H. S., Coc, J., and Patchefsky, A. S., 1980, Immunohistologic study of blood group substances in polyps of the distal colon, Am. J. Clin. Pathol. 73: 345–350.PubMedGoogle Scholar
  74. Cooper, N. R., and Morrison, D. C., 1978, Binding and activation of the first component of human complement by the lipid A region of lipopolysaccharides, J. Immunol. 120: 1862–1868.PubMedGoogle Scholar
  75. Cowan, E. P., Cummings, R. D., Schwartz, B. D., and Cullen, S. E., 1982a, Analysis of murine la antigen glycosylation by lectin affinity chromatography, J. Biol. Chem. 257: 11241–11248.PubMedGoogle Scholar
  76. Cowan, E. P., Schwartz, B. D., and Cullen, S. E., 1982b, Murine I-Ak a-chain subspecies with glycosylation differences, J. Immunol. 128: 2019–2025.PubMedGoogle Scholar
  77. Cowing, C., and Chapdelaine, J. M., 1982, T cells discriminate between Ia antigens expressed on allogeneic accessory cells and B cells: A potential function for carbohydrate side chains on Ia molecules, Proc. Natl. Acad. Sci. U.S.A. 80: 6000–6004.CrossRefGoogle Scholar
  78. Crandall, M., Lawrence, L. M., and Saunders, R. M., 1974, Molecular complementarity of yeast glycoprotein mating factors, Proc. Natl. Acad. Sci. USA 71: 26–29.PubMedCrossRefGoogle Scholar
  79. Critchley, D. R., and Vicker, M. G., 1977, Glycolipids as membrane receptors important in growth regulation and cell—cell interactions, in: Dynamic Aspects of Cell Surface Organization ( G. Poste and G. L. Nicolson, eds.), pp. 307–370, Elsevier/North-Holland, Amsterdam.Google Scholar
  80. Cuatrecasas, P., 1973a, Interaction of Vibrio cholerae enterotoxin with cell membranes, Biochemistry 12: 3547–3558.PubMedCrossRefGoogle Scholar
  81. Cuatrecasas, P., 1973b, Gangliosides and membrane receptors for cholera toxin, Biochemistry 12: 3558–3566.PubMedCrossRefGoogle Scholar
  82. Cullen, S. E., and Nathenson, S. G., 1974, Further characterization of la (immune response region associated) antigen molecules, in: The Immune System: Genes, Receptors, Signals ( E. E. Sercarz, A. R. Williamson, and C. F. Fox, eds.), pp. 191–200, Academic Press, New York.Google Scholar
  83. Cullen, S. E., Kindle, C. S., Shreffler, D. C., and Cowing, C., 1981a, Differential glycosylation of murine B cell and spleen adherent cell la antigens. J. Immunol. 127: 1478–1484.PubMedGoogle Scholar
  84. Cullen, S. E., Rose, S. M., and Kindle, C. S., 1981b, 1a antigens: Molecular components in immune regulation?, in: Current Trends in Histocompatibility (R. A. Reisfeld and S. Ferrone, eds.), pp. 391–413, Plenum Press, New York.Google Scholar
  85. Curtoni, E. S., Borelli, I., Cornaglia, B. M., Olivetti, E., and Peyretti, F., 1980, Antibodies for other blood systems present in workshop DR sera and interaction with anti-DR antibodies, in: Histocompatibility Testing ( P. I. Teraski, ed.) pp. 900–902, UCLA Tissue Typing Laboratory, Los Angeles.Google Scholar
  86. Czop, J. K., Fearon, D. T., and Austen, K. F., 1978, Membrane sialic acid on target particles modulates their phagocytosis by a trypsin-sensitive mechanism on human monocytes, Proc. Natl. Acad. Sci. USA 75: 3831–3835.PubMedCrossRefGoogle Scholar
  87. Dahr, W., Gielen, W., and Beyreuther, K., 1980, Structure of the Ss blood group antigens. I. Isolation of Ss-active glycopeptides and differentiation of the antigens by modification of methionine, Z. Physiol. Chem. 361: 145–152.CrossRefGoogle Scholar
  88. Dawson, A., and Franks, D., 1967, Factors affecting the expression of blood group antigen A in cultured cells. Exp. Cell Res. 47: 377–385.PubMedCrossRefGoogle Scholar
  89. Day, J. F., Thornburg, R. W., Thorpe, S. R., and Baynes, J. W., 1980, Carbohydrate-mediated clearance of antibody antigen complexes from the circulation, J. Biol. Chem. 255: 2360–2365.PubMedGoogle Scholar
  90. Dazzo, F. B., 1980, Lectins and their saccharide receptors as determinants of specificity in the Rhizobium—legume symbiosis, in: The Cell Surface: Mediator of Developmental Processes ( S. Subtelny and N. K. Wessels, eds.), pp. 277–304, Academic Press, New York.Google Scholar
  91. Decker, J. M., and Marchalonis, J. J., 1979, Lectin-like molecules on murine T and B lymphocytes, Fed. Proc. Abstr. 38: 934.Google Scholar
  92. Decker, J. M., Hinson, A., and Ades, E. W., 1984, Inhibition of human NK cell cytotoxicity against K562 cells with glycopeptides from K562 plasma membranes, (submitted).Google Scholar
  93. Despont, J. P., Abel, C. A., and Grey, H. M., 1975, Sialic acids and sialyltransferases in murine lymphoid cells: Indicators of T cell maturation, Cell. Immunol. 17: 487–494.PubMedCrossRefGoogle Scholar
  94. de Waard, A., Hickman, S., and Kornfeld, S., 1976, Isolation and properties of (3-galactoside binding lectins of calf heart and lung, J. Biol. Chem. 251: 7581–7587.PubMedGoogle Scholar
  95. Dillner-Centerlind, M.-L., Axelsson, B., Hammarstrom, S., Hellstrom, U., and Perlmann, P., 1980, Interaction of lectins with human T lymphocytes: Mitogenic properties, inhibitory effects, binding to the cell membrane and to isolated surface glycopeptides, Eur. J. Immunol. 10: 434–442.CrossRefGoogle Scholar
  96. Dippold, W. G., Lloyd, K. O., Li, L. T. C., Ikeda, H., Oettgen, H. F., and Old L. J., 1980, Cell surface antigens of human malignant melanoma: Definition of six antigenic systems with mouse monoclonal antibodies, Proc. Natl. Acad. Sci. USA 77: 6114–6118.PubMedCrossRefGoogle Scholar
  97. Duguid, J. P., and Old, D. C., 1980, Adhesive properties of Enterobacteriaceae, in: Bacterial Adherence ( E. H. Beachey, ed.), pp. 186–217, Chapman & Hall, London.Google Scholar
  98. Durdik, J. M., Beck, B. N., and Henney, C. S., 1980, Asialo GMi and Thy 1 as cell surface markers of murine NK cells, in: Natural Cell-Mediated Immunity against Tumors ( R. E. Herberman, ed.), pp. 37–46, Academic Press, New York.Google Scholar
  99. Durocher, J. R., Payne, R. C., and Conrad, M. E., 1975, Role of sialic acid in erythrocyte survival, Blood 45:11–20.PubMedGoogle Scholar
  100. Durr, R., Shur, B., and Roth, S., 1977, Sperm-associated sialyltransferase activity, Nature (London) 265: 547–548.CrossRefGoogle Scholar
  101. Dysart, J., and Edwards, J. G., 1977, A membrane-bound haemagglutinin from cultured hamster fibroblasts (BHK 21 cells), FEBS Lett. 75: 96–100.PubMedCrossRefGoogle Scholar
  102. Edwards, M. S., Kasper, D. L., Jennings, H. J., Baker, C. J., and Nicholson-Weller, A., 1982, Capsular sialic acid prevents activation of the alternative complement pathway by type III, group B streptococci, J. Immunol. 128: 1278–1283.PubMedGoogle Scholar
  103. Eisenbarth, G. S., Walsh, F. S., and Nirenberg, M., 1979, Monoclonal antibody to a plasma membrane antigen of neurons, Proc. Natl. Acad. Sci. USA 76: 4913–4917.PubMedCrossRefGoogle Scholar
  104. Emmelot, P., van Beek, W. P., and Smets, L. A., 1976, Cell surface carbohydrate and cell transformation: A general change signifying tumorigenicity, in: Membrane Alterations as Basis of Liver Injury ( H. Popper, L. Bianchi, and W. Reulter, eds.), pp. 179–195, University Park Press, Baltimore.Google Scholar
  105. Eshdat, T., Ofek, I., Yashouv-Gan, Y., Sharon, N., and Mirelman, D., 1978, Isolation of a mannose-specific lectin from Escherichia coli and its role in the adherence of the bacteria to epithelial cells, Biochem. Biophys. Res. Commun. 85: 1551–1559.PubMedCrossRefGoogle Scholar
  106. Etzler, M. E., 1974, Use of plant agglutinins in characterization of glycoprotein and glycolipids from mammalian cells, Ann, N.Y. Acad. Sci. 234: 260–275.CrossRefGoogle Scholar
  107. Fearon, D. T., 1978, Regulation by membrane sialic acid of ß1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway, Proc. Natl. Acad. Sci. USA 75: 1971–1975.PubMedCrossRefGoogle Scholar
  108. Feizi, T., 1980, The monoclonal antibodies of cold agglutinin syndrome, Med. Biol. 58: 123–127.PubMedGoogle Scholar
  109. Fichtelius, K.-E., 1969a, Introduction: Organ-and tissue-specific cell receptors, in: Cellular Recognition ( R. T. Smith and R. A. Good, eds.), p. 69, Appleton—Century—Crofts, New York.Google Scholar
  110. Fichtelius, K.-E., 1969b, Homing of lymphocytes to the gut epithelium, in: Cellular Recognition (R. T. Smith and R. A. Good, eds.), pp. 71–78, Appleton—Century—Crofts, New York.Google Scholar
  111. Finne, J., Krusius, T., and Rauvala, H., 1977, Occurrence of disialosyl groups in glycoproteins, Biochem. Biophys. Res. Commun. 74: 405–410.PubMedCrossRefGoogle Scholar
  112. Fleisher, T. A., Greene, W. C., Blaese, R. M., and Waldmann, T. A., 1981, Soluble suppressor supernatants elaborated by concanavalin A-activated human mononuclear cells. II. Characterization of a soluble suppressor of B cell immunoglobulin production, J. Immunol. 126: 1192–1197.PubMedGoogle Scholar
  113. Ford, W. L., and Gowans, J. L., 1969, The traffic of lymphocytes, Semin. Hematol. 6: 6783.Google Scholar
  114. Ford, W. L., Sedgley, M., Sparshott, S. M., and Smith, M. E., 1976, The migration of lymphocytes across specialized vascular endothelium. II. The contrasting consequences of treating lymphocytes with trypsin or neuraminidase, Cell Tissue Kinet. 9: 351–361.PubMedGoogle Scholar
  115. Fox, R. A., Gregory, D. S., and Feldman, J. D., 1974, Macrophage receptors for migration inhibitory factor (MIF), migration stimulatory factor (MSF), and agglutinating factor, J. Immunol. 112: 1867–1872.PubMedGoogle Scholar
  116. Freed, J. H., and Nathenson, S. G., 1977, Similarity of the carbohydrate structures of H-2 and la glycoproteins, J. Immunol. 119: 477–482.PubMedGoogle Scholar
  117. Fredman, P., Richert, N. D., Magnani, J. L., Willingham, M. C., Pastan, I., and Ginsburg, V., 1983, A monoclonal antibody that precipitates the glycoprotein receptor for epidermal growth factor is directed against the human blood group H type I antigen, J. Biol. Chem. 258: 11206–11210.PubMedGoogle Scholar
  118. Freimer, N. B., Ogmundsdottir, H. M., Blackwell, C. C., Sutherland, I. W., Graham, L., and Weir, D. M., 1978, The role of cell wall carbohydrates in binding of microorganisms to mouse peritoneal exudate macrophages, Acta Pathol. Microbiol. Immunol. Scand. 86: 53–57.Google Scholar
  119. Freitas, A. A., and de Sousa, M., 1975, Control mechanisms of lymphocyte traffic: Modification of the traffic of 51Cr-labeled mouse lymph node cells by treatment with plant lectins in intact and splenectomized hosts, Eur. J. Immunol. 5: 831–838.CrossRefGoogle Scholar
  120. Freitas, A. A., and de Sousa, M., 1976, Control mechanism of lymphocyte traffic: Altered migration of 51Cr-labeled mouse lymph node cells pretreated in vitro with phospholipases, Eur. J. Immunol. 6: 703–711.PubMedCrossRefGoogle Scholar
  121. Friedman, R. M., and Kohn, L. D., 1976, Cholera toxin inhibits interferon action, Biochem. Biophys. Res. Commun. 70: 1078–1084.PubMedCrossRefGoogle Scholar
  122. Fukuda„ M., Fukuka, M. N., Papayannopoulou, T., and Hakomori, S.-I., 1980, Membrane differentiation in human erythroid cells: Unique profiles of cell surface glycoproteins expressed in erythroblasts in vitro from three ontogenic stages, Proc. Natl. Acad. Sci. USA 77: 3474–3478.PubMedCrossRefGoogle Scholar
  123. Gachelin, G., Buc-Caron, M.-H., Lis, H., and Sharon, N., 1976, Saccharides on teratocarcinoma cell plasma membranes: Their investigation with radioactively labelled lectins, Biochim. Biophys. Acta 436: 825–832.PubMedCrossRefGoogle Scholar
  124. Galili, U., and Schlesinger, M., 1974, The formation of stable E rosettes after neuraminidase treatment of either human peripheral blood lymphocytes or of sheep red blood cells, J. Immunol. 112: 1628–1634.PubMedGoogle Scholar
  125. Galili, U., and Schlesinger, M., 1976, The formation of stable E-rosettes by human T lymphocytes activated in mixed lymphocyte reactions, J. Immunol. 117: 730–735.PubMedGoogle Scholar
  126. Galili, U., Galili, N., Vanky, F., and Klein, E., 1978, Natural species-restricted attachment of human and murine T lymphocytes to various cells, Proc. Natl. Acad. Sci. USA 75: 2396–2400.PubMedCrossRefGoogle Scholar
  127. Gartner, T. K., Williams, D. C., and Minion, F. C., 1978, Thrombin-induced platelet aggregation is mediated by a platelet plasma membrane-bound lectin, Science 200: 1281–1283.PubMedCrossRefGoogle Scholar
  128. Gelb, L. D., and Lerner, A. M., 1965, Reovirus hemagglutination: Inhibition by N-acetylo-glucosamine, Science 147: 404–405.PubMedCrossRefGoogle Scholar
  129. Gershowitz, H., and Neal, J. V., 1970, The blood group polymorphisms: Why are they there?, in: Blood and Tissue Antigens ( D. Aminoff, ed.), pp. 33–49, Academic Press, New York.Google Scholar
  130. Gesner, B. M., 1966, Cell surface sugars as sites of cellular reactions, Ann. N.Y. Acad. Sci. 129: 758–766.CrossRefGoogle Scholar
  131. Gesner, B. M., and Ginsburg, V., 1964, Effect of glycosidases on the fate of transfused lymphocytes, Proc. Natl. Acad. Sci. USA 52: 750–755.PubMedCrossRefGoogle Scholar
  132. Gesner, B., and Thomas, L., 1966, Sialic acid binding sites: Role in hemagglutination by Mycoplasma gallisepticum, Science 151: 590–591.Google Scholar
  133. Gesner, B. M., and Woodruff, J. J., 1969, Factors affecting the distribution of lymphocytes, in: Cellular Recognition ( R. T. Smith and R. A. Good, eds.), pp. 79–90, AppletonCentury—Crofts, New York.Google Scholar
  134. Gesner, B. M., Woodruff, J. J., and McCluskey, R. T., 1969, An autoradiographic study of the effect of neuraminidase or trypsin on transfused lymphocytes, Am. J. Pathol. 57: 215–230.PubMedGoogle Scholar
  135. Gewurz, H., Shin, H. S., and Mergenhagen, S. E., 1968, Interactions of the complement system with endotoxic lipopolysaccharide: consumption of each of the six terminal complement components. J. Exp. Med. 128: 1049–1057.PubMedCrossRefGoogle Scholar
  136. Giblett, E. R., 1977, Some perspectives on blood group genetics and immunology, in: Perspectives on Blood Group Immunology and Genetics ( J. F. Mohn, R. W. Plunkett, R. K. Cunningham, and R. M. Lambert, eds.), pp. 437–448, Karger, Basel.Google Scholar
  137. Gill, D. M., and King, C. A., 1975, The mechanism of action of cholera toxin in pigeon erythrocyte lysates, J. Biol. Chem. 250: 6424–6432.PubMedGoogle Scholar
  138. Gillette, R. W., McKenzie, G. O., and Swanson, M. H., 1973, Effect of concanavalin A on the homing of labeled T lymphocytes, J. Immunol. 111: 1902–1905.PubMedGoogle Scholar
  139. Ginsburg, V., and Neufeld, E. F., 1969, Complex heterosaccharides of animals, Annu. Rev. Biochem. 38: 371–388.PubMedCrossRefGoogle Scholar
  140. Glaudemans, C. P. J., Das, M. K., and Vrana, M., 1978, Homogeneous murine immunoglobulins with anti carbohydrate specificity, Methods Enzymol. 50: 316–323.PubMedCrossRefGoogle Scholar
  141. Glick, M. C., 1974, Chemical components of surface membranes related to biological properties, in: Biology and Chemistry of Eukaryotic Cell Surfaces, Vol. 7 ( E. Y. C. Lee and E. E. Smith, eds.), pp. 213–240, Academic Press, New York.Google Scholar
  142. Glickman, R. M., And Bouhours, J. F., 1976, Characterization, distribution and biosynthesis of the major ganglioside of rat intestinal mucosa, Biochim. Biophys. Acta 424: 17–25.PubMedGoogle Scholar
  143. Goldman, R., 1974, Effect of concanavalin A on phagocytosis by macrophages, FEBS Lett. 46: 209–213.PubMedCrossRefGoogle Scholar
  144. Goldstein, I. J., and Hayes, C. E., 1978, The lectins: Carbohydrate-binding proteins of plants and animals, Adv. Carbohydr. Chem. Biochem. 35: 127–128.PubMedCrossRefGoogle Scholar
  145. Goldstein, I. J., Hughes, R. C., Monsigny, M., Osawa, T., and Sharon N., 1980, What should be called a lectin?, Nature (London) 285: 66.CrossRefGoogle Scholar
  146. Goldwasser, E., Kung, C. K.-H., and Eliason, J., 1974, On the mechanism of erythropoietininduced differentiation, J. Biol. Chem. 249: 4202–4206.PubMedGoogle Scholar
  147. Gooi, H. C., Feizi, T., Kapadia, A., Knowles, B. B., Solter, D., and Evans, M. J., 1981, Stage-specific embryonic antigen involves alpha 1–3 fucosylated type 2 blood group chains, Nature (London) 292: 156–158.CrossRefGoogle Scholar
  148. Gooi, H. C., Thorpe, S. J., Hounsell, E. F., Rumpold, H., Kraft, D., Foster, O., and Feizi, T., 1983, Marker of peripheral blood granulocytes and monocytes of man recognized by two monoclonal antibodies VEP8 and VEP9 involves the trisaccharide 3-fucosyl-Nacetyllactosamine, Eur. J. Immunol. 13: 306–312.PubMedCrossRefGoogle Scholar
  149. Gorczynski, R. M., 1984, Macrophages, self—non-self discrimination and cell surface carbohydrate receptors in the immune system (submitted).Google Scholar
  150. Gotschlich, E. C., and Edelman, G. M., 1967, Binding properties and specificity of C-reactive protein, Proc. Natl. Acad. Sci. USA 57: 706–712.PubMedCrossRefGoogle Scholar
  151. Gottschalk, A., 1966, Interactions between glycoproteins and viruses, in: The Amino Sugars, Vol. IIB ( E. A. Balazs and R. W. Jeanloz, eds.), pp. 337–359, Academic Press, New York.Google Scholar
  152. Grabel, L. B., Rosen, S. D., and Martin, G. R., 1979, Teratocarcinoma stem cells have a cell surface carbohydrate-binding component implicated in cell—cell adhesion, Cell 17: 477–484.PubMedCrossRefGoogle Scholar
  153. Greene, W. C., Fleisher, T. A., and Waldmann, T. A., 1981, Soluble suppressor supernatants elaborated by concanavalin A-activated human mononuclear cells. I. Characterization of a soluble suppressor of T cell proliferation, J. Immunol. 126: 1185–1191.PubMedGoogle Scholar
  154. Gregson, N. A., and Hammer, C. T., 1982, Some immunological properties of antisera raised against the trisialoganglioside GT,b, Mol. Immunol. 19: 543–550.PubMedCrossRefGoogle Scholar
  155. Grollman, E. F., Kobata, A., and Ginsburg, V., 1970, Enzymatic basis of blood types in man, Ann. N.Y. Acad. Sci. 169: 153–160.PubMedCrossRefGoogle Scholar
  156. Grollman, E. F., Lee, G., Ramos, S., Lazo, P. S., Kaback, R., Friedman, R. M., and Kohn, L. D., 1978, Relationships of the structure and function of the interferon receptor to hormone receptors and establishment of the antiviral state, Cancer Res. 38: 4172–4185.PubMedGoogle Scholar
  157. Gupta, S., Good, R. A., and Siegal, F. P., 1976, Rosette-formation with mouse erythrocytes. II. A marker for human B and non-T lymphocytes, Clin. Exp. Immunol. 25: 319–327.PubMedGoogle Scholar
  158. Habu, S., Fukui, H., Shimamura, K., Kasai, M., Nagai, Y., Okumura, K. O., and Tamaoki, N., 1981, In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice, J. Immunol. 127: 34–37.PubMedGoogle Scholar
  159. Hakomori, S.-I., 1973, Glycolipids of tumor cell membrane, Adv. Cancer Res. 18: 265–312.PubMedCrossRefGoogle Scholar
  160. Hakomori, S.-I., 1975, Structures and organization of cell surface, glycolipids dependency on cell growth and malignant transformation, Biochim. Biophys. Acta 417: 55–89.PubMedGoogle Scholar
  161. Hakomori, S.-I., 1981, Blood group ABH and Ii antigens of human erythrocytes: Chemistry, polymorphism, and their developmental change, Semin. Hematol. 18: 39–62.PubMedGoogle Scholar
  162. Hakomori, S.-I., Koscielak, J., Bloch, K. J., and Jeanloz, R. W., 1967, Immunologic relationship between blood group substances and a fucose-containing glycolipid of human adenocarcinoma, J. Immunol. 98: 31–38.PubMedGoogle Scholar
  163. Hakomori, S.-I., Wang, S. M., and Young, W. W., Jr., 1977a, Isoantigenic expression of Forssman glycolipid in human gastric and colonic mucosa: Its possible identity with “A-like antigen” in human cancer, Proc. Natl. Acad. Sci. USA 74: 3032–3027.CrossRefGoogle Scholar
  164. Hakomori, S.-I., Watanabe, K., and Laine, R. A., 1977b, Glycosphingolipids with blood group A, H, and I activity: Their status in group A1 and A2 erythrocytes and their changes associated with ontogeny and oncogeny, in: Human Blood Groups ( J. F. Mohn, R. W. Plunkett, R. K. Cunningham, and R. M. Lambert, eds.), pp. 150–163, Karger, Basel.Google Scholar
  165. Hall, J. L., and Rowlands, D. T., Jr., 1974, Heterogeneity of lobster agglutinins. II. Specificity of agglutinin—erythrocyte binding, Biochemistry 13: 828–832.PubMedCrossRefGoogle Scholar
  166. Hall, J. L., Rowlands, D. T., Jr., and Nilson, U. R., 1972, Complement-unlike hemolytic activity in lobster hemolymph, J. Immunol. 109: 816–823.PubMedGoogle Scholar
  167. Hankins, C. N., and Shannon, L. M., 1978, The physical and enzymatic properties of a phytohemagglutinin from mung beans, J. Biol. Chem. 253: 7791–7797.PubMedGoogle Scholar
  168. Hansen, T. H., and Sachs, D. H., 1978, Isolation and antigenic characterization of the product of a third polymorphic H-2 locus, H-2L, J. Immunol. 121: 1469–1472.PubMedGoogle Scholar
  169. Hart, G. W., 1982, The role of asparagine-linked oligosaccharides in cellular recognition by thymic lymphocytes, J. Biol. Chem. 257: 151–158.PubMedGoogle Scholar
  170. Haywood, A. M., 1974, Characteristics of Sendai virus receptors in a model membrane, J. Mol. Biol. 83: 427–436.PubMedCrossRefGoogle Scholar
  171. Heath, E. C., 1971, Complex polysaccharides, Annu. Rev. Biochem. 40: 29–56.PubMedCrossRefGoogle Scholar
  172. Hellstrom, U., Dillner, M.-L., Hammarstrom, S., and Perlmann, P., 1976, The interaction of mitogenic and nonmitogenic lectins with T lymphocytes: Association of cellular receptor sites, Scand. J. Immunol. 5: 45–54.Google Scholar
  173. Henkart, P., Humphreys, S., and Humphreys, T., 1973, Characterization of sponge aggregation factor: A unique proteoglycan complex, Biochemistry 12: 3045–3050.PubMedCrossRefGoogle Scholar
  174. Herberman, R. B., and Holden, H. T., 1978, Natural cell-mediated immunity, Adv. Cancer Res. 27: 305–377.PubMedCrossRefGoogle Scholar
  175. Hickman, S., and Neufeld, E. F., 1972, A hypothesis for I-cell disease: Defective hydrolases that do not enter lysosome, Biochem. Biophys. Res. Commun. 49: 992–999.PubMedCrossRefGoogle Scholar
  176. Hickman, S., Shapiro, L. J., and Neufeld, E. F., 1974, A recognition marker required for uptake of lysosomal enzyme by cultured fibroblasts, Biochem. Biophys. Res. Commun. 57: 55–61.PubMedCrossRefGoogle Scholar
  177. Hieber, V., Distler, J., Myerowitz, R., Schmickel, R. D., and Jourdian, G. W., 1976, The role of glycosidically bound mannose in the assimilation of (3-galactosidase by generalized gangliosidosis fibroblasts, Biochem. Biophys. Res. Commun. 73: 710–717.PubMedCrossRefGoogle Scholar
  178. Higgins, T. J., and Parish, C. R., 1980, Extraction of the carbohydrate-defined class of la antigens from murine spleen cells and serum, Mol. Immunol. 17: 1065–1073.PubMedCrossRefGoogle Scholar
  179. Higgins, T. J., Sabatino, A., Remold, H., and David, J., 1976, Enhancement of migration inhibitory macrophages (MO) with M.4) glycolipids (GL), Fed. Proc. Abstr. 35: 389.Google Scholar
  180. Higgins, T. J., Parish, C. R., Hogarth, P. M., McKenzie, I. F. C., and Hammerling, G. J., 1980a, Demonstration of carbohydrate-and protein-determined la antigens by monoclonal antibodies, Immunogenetics 11: 467–482.PubMedCrossRefGoogle Scholar
  181. Higgins, T. J., Liu, D. Y., Remold, H. G., and David, J. R., 1980b, Further characterization of the putative glycolipid receptor for MIF: Role of fucose associated with an acidic glycolipid, Biochem. Biophys. Res. Commun. 93: 1259–1265.PubMedCrossRefGoogle Scholar
  182. Hill, M., Bechet, J. J., and d’Albis, A., 1979, Disuccinimidyl esters as bifunctional cross-linking reagents for proteins: Assays with myosin, FEBS Lett. 102: 282–286.PubMedCrossRefGoogle Scholar
  183. Hirano, T., Hashimoto, H., Shiokawa, Y., Iwamori, M., Nagai, Y., Kasai, M., Ochiai, Y., and Okumura, K. O., 1980, Antiglycolipid autoantibody detected in the sera from systemic lupus erythematosus patients, J. Clin. Invest. 66: 1437–1440.PubMedCrossRefGoogle Scholar
  184. Hirata, A. A., McIntire, F. C., Terasaki, P. I., and Mittal, K. K., 1973, Cross-reactions between human transplantation antigens and bacterial lipopolysaccharides, Transplantation 15: 441–445.PubMedCrossRefGoogle Scholar
  185. Hirsch, H. E., and Parks, M. E., 1976, Serological reactions against glycolipid-sensitized liposomes in multiple sclerosis, Nature (London) 264: 785–787.CrossRefGoogle Scholar
  186. Hirsch, R. L., Winkelstein, J. A., and Griffin, D. E., 1980, The role of complement in viral infections: Activation of the classical and alternative complement pathway by sindbis virus, J. Immunol. 124: 2507–2510.PubMedGoogle Scholar
  187. Hirsch, R. L., Griffin, D. E., and Winkelstein, J. A., 1981, Host modification of sindbis virus sialic acid content influences alternative complement pathway activation and virus clearance, J. Immunol. 127: 1740–1743.PubMedGoogle Scholar
  188. Hoessli, D., Bron, C., and Pink, R. L., 1980, T-lymphocyte differentiation is accompanied by increase in sialic acid content of Thy-1 antigen, Nature (London) 283: 576–578.CrossRefGoogle Scholar
  189. Hoflack, B., Cacan, R., Montreuil, J., and Verbert, A., 1979, Detection of ectosialyltransferase activity using whole cells: Correction of misleading results due to the release of intracellular CMP-N-acetylneuraminic acid, Biochim. Biophys. Acta. 568: 348–356.PubMedGoogle Scholar
  190. Holmgren, J., Mansson, J.-E., and Svennerholm, L., 1974, Tissue receptor for cholera exotoxin: structural requirements of GM1 ganglioside in toxin binding and inactivation. Med. Biol. 52:229–233.PubMedGoogle Scholar
  191. Homma, R., 1968, Reaction of Japanese encephalitis virus with mannan, Acta Virol. 12: 385–396.PubMedGoogle Scholar
  192. Horowitz, M. I., 1978, Immunological aspects, in: The Glycoconjugates, Vol. II ( M. I. Horowitz and W. Pigman, eds.), pp. 387–436, Academic Press, New York.Google Scholar
  193. Howe, C., and Lee, L. T., 1972, Virus—erythrocyte interactions, Adv. Virus Res. 17: 1–50.CrossRefGoogle Scholar
  194. Howie, S., Parish, C. R., David, C. S., McKenzie, I. F. C., Maurer, P. H., and Feldman, M., 1979, Serological analysis of antigen-specific helper factors specific for poly-L(Tyr, Glu)-poly-DLAla—poly-LLys((T,G)-A—L) and LGlu60-LA1a30-LTyr10(GAT), Eur. J. Immunol. 9: 501–506.PubMedCrossRefGoogle Scholar
  195. Huang, R. T. C., 1978, Cell adhesion mediated by glycolipids, Nature (London) 276: 624–626.CrossRefGoogle Scholar
  196. Hughes, R., and Gardas, A., 1976, Phenotypic reversion of ricin-resistant hamster fibroblasts to a sensitive state after coating with glycolipid receptors, Nature (London) 264: 63–66.CrossRefGoogle Scholar
  197. Hughes, R. C., Palmer, P. D., and Sanford, B. H., 1973, Factors involved in the cytotoxicity of normal guinea pig serum for cells of murine tumor TA3 sublines treated with neuraminidase, J. Immunol. 111: 1071–1080.PubMedGoogle Scholar
  198. Ihara, I., Harada, Y., Ihara, S., and Kawakami, M., 1982, A new complement-dependent bactericidal factor found in nonimmune mouse sera: Specific binding to polysaccharide of Ra chemotype Salmonella, J. Immunol. 128: 1256–1260.Google Scholar
  199. Irle, C., Piguet, P.-F., and Vassalli, P., 1978, In vitro maturation of immature thymocytes into immunocompetent T cells in the absence of direct thymic influence, J. Exp. Med. 148: 32–45.PubMedCrossRefGoogle Scholar
  200. Itoh, N., and Yamashina, I., 1975, Interaction of antimannan with glycopeptides, Biochem. Biophys. Res. Commun. 67: 840–845.CrossRefGoogle Scholar
  201. Jacob, F., 1979, Cell surface and early stages of mouse embryogenesis, Curr. Top. Dev. Biol. 13: 117–137.PubMedCrossRefGoogle Scholar
  202. Jamieson, G. A., Urban, C. L., and Barber, A. J., 1971, Enzymatic basis for platelet: collagen adhesion as the primary step in haemostasis, Nature New Biol. 234: 5–7.PubMedGoogle Scholar
  203. Ji, T. H., and Nicolson, G. L., 1974, Lectin binding and perturbation of the outer surface of the cell membrane induces a transmembrane organizational alteration at the inner surface, Proc. Natl. Acad. Sci. USA 71: 2212–2216.PubMedCrossRefGoogle Scholar
  204. Joffe, S., Rapport, M. M., and Graf, L., 1963, Identification of an organ specific lipid hapten in brain, Nature (London) 197: 60–62.CrossRefGoogle Scholar
  205. Johannsen, R., Sedlacek, H. H., and Schmidtberger, R., 1979, Characteristics of cytotoxic antibodies against neuraminidase-treated lymphocytes in man, J. Natl. Cancer Inst. 62: 733–742.PubMedGoogle Scholar
  206. Johnson, B. J., Kucich, U. N., and Maurelli, A. T., 1976, Studies on the antigenic determinants of the Thy-1.2 alloantigen as expressed by the murine lymphoblastoid line S-49.1 TB 2.3, J. Immunol. 116: 1669–1672.PubMedGoogle Scholar
  207. Jolley, M. E., Glaudemans, C. P. J., Rudikoff, S., and Potter, M., 1974, Structural requirements for the binding of derivatives of D-galactose to two homogeneous murine immunoglobulins, Biochemistry 13: 3179–3184.PubMedCrossRefGoogle Scholar
  208. Kaladas, P. M., Kabat, E. A., Kimura, A., and Ersson, B., 1981, The specificity of the combining site of the lectin from Vicia villosa seeds which reacts with cytotoxic Tlymphoblasts, Mol. Immunol. 18: 969–977.PubMedCrossRefGoogle Scholar
  209. Kamenov, B., Kieran, M. W., Leigh, J. B., Greenberg, A. H., and Longnecker, B. M., 1983, A new model for leukemia-lymphoma metastasis. I. Differential growth and rejection of murine lymphoid-leukemia cell lines in the bone marrow, Proceedings, Symposium on Metastasis and Invasion, Houston.Google Scholar
  210. Kano, K., and Miigrom, F., 1970, Antigens shared by human tissues and erythrocytes, in: Histocompatibility Testing ( P. I. Terasaki, ed.), pp. 443–452, Williams & Wilkins, Baltimore.Google Scholar
  211. Kaplan, A., Achord, D. T., and Sly, W. S., 1977, Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts, Proc. Natl. Acad. Sci. USA 74: 2026–2030.PubMedCrossRefGoogle Scholar
  212. Karol, R. A., Kundu, S. K., Suzuki, A., and Marcus, D. M., 1980, Immunological reactivity and concentration of glycosphingolipids in adult and umbilical cord erythrocytes, Blood Transfus. Immunohaematol. 23: 589–598.CrossRefGoogle Scholar
  213. Karsenti, E., and Arvrameas, S., 1973, The use of concanavalin A in the study of the dynamics of lymphocyte membrane glycans, FEBS Lett. 32: 238–242.PubMedCrossRefGoogle Scholar
  214. Kasai, M., Iwamori, M., Nagai, Y., Okumura, K., and Tada, T., 1980, A glycolipid on the surface of mouse natural killer cells, Eur. J. Immunol. 10: 175–180.PubMedCrossRefGoogle Scholar
  215. Kasper, D. L., Winkelhake, J. L., Zollinger, W. D., Brandt, B. L., and Artenstein, M. S., 1973, Immunochemical similarity between polysaccharide antigens of Escherichia coli O7:K1(L):NM and group B Neisseria meningitidis, J. Immunol. 110: 262–268.Google Scholar
  216. Kato, K. P., Wang, T. J., and Esselman, W. J., 1979, Radiolabeling and isolation of Thy-1 active glycolipids from murine brain and lymphoma cell lines, J. Immunol. 123: 1977–1984.PubMedGoogle Scholar
  217. Kaufmann, S. H. E., Schauer, R., and Hahn, H., 1981, Carbohydrate surface constituents of T cells mediating delayed-type hypersensitivity that control entry into sites of antigen deposition, Immunobiology 160: 184–195.PubMedCrossRefGoogle Scholar
  218. Kawasaki, T., and Ashwell, G., 1977, Isolation and characterization of an avian hepatic binding protein specific for N-acetylglucosamine-terminated glycoproteins, J. Biol. Chem. 252: 6536–6543.PubMedGoogle Scholar
  219. Kawasaki, T., Etoh, R., and Yamashina, I., 1978, Isolation and characterization of a mannan-binding protein from rabbit liver, Biochem. Biophys. Res. Commun. 81: 1018–1024.PubMedCrossRefGoogle Scholar
  220. Kazatchkine, M. D., Fearon, D. T., and Austen, K. F., 1979, Human alternative complement pathway: Membrane-associated sialic acid regulates the competition between B and ß1H for cell-bound C3b, J. Immunol. 122: 75–81.PubMedGoogle Scholar
  221. Kieda, C. M. T., Bowles, D. J., Ravid, A., and Sharon, N., 1978, Lectins in lymphocyte membranes, FEBS Lett. 94: 391–396.PubMedCrossRefGoogle Scholar
  222. Kieda, C. M. T., Roche, A.-C., Delmotte, F., and Monsigny, M., 1979, Lymphocyte membrane lectins: Direct visualization by the use of fluoresceinyl-glycosylated cytochemical markers, FEBS Lett. 99: 329–332.PubMedCrossRefGoogle Scholar
  223. Kim, Y. S., Whitehead, J. S., Siddiqui, B., and Tsao, D., 1978, Glycoconjugate alterations in malignant and inflammatory disease of the colon, in: Glycoproteins and Glycolipids in Disease Processes ( E. F. Walborg, Jr., ed.), pp. 295–310, American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  224. Kimura, A. K., and Wigzell, H., 1977, Cell surface glycoproteins of murine cytotoxic T lymphocytes. I. T 145, a new cell surface glycoprotein selectively expressed on Ly12+ cytotoxic T lymphocytes, J. Exp. Med. 147: 1418–1434.CrossRefGoogle Scholar
  225. Kimura, A. K., Wigzell, H., Holmquist, G., Ersson, B., and Carlsson, P., 1979a, Selective affinity fractionation of murine cytotoxic T lymphocytes (CTL), J. Exp. Med. 149: 473–484.PubMedCrossRefGoogle Scholar
  226. Kimura, A., Orn, A., Holmquist, G., Wigzell, H., and Ersson, B., 1979b, Unique lectinbinding characteristics of cytotoxic T lymphocytes allowing their distinction from natural killer cells and “K” cells, Eur. J. Immunol. 9: 575–578.PubMedCrossRefGoogle Scholar
  227. Klein, J., 1975, Biology of the Mouse Histocompatibility-2 Complex, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  228. Klein, J., and Hammerberg, C., 1977, The control of differentiation by the T complex, Immunol. Rev. 33: 70–104.PubMedCrossRefGoogle Scholar
  229. Klempner, M. S., and Rocklin, R. E., 1982, Specific binding of leukocyte inhibitory factor to neutrophil plasma membranes, J. Immunol. 128: 2040–2043.PubMedGoogle Scholar
  230. Knowles, R. W., Bai, Y., Daniels, G. L., and Watkins, W., 1982, Monoclonal antitype 2 H: An antibody detecting a precursor of the A and B blood group antigens, J. Immunogenet. 9: 69–76.PubMedCrossRefGoogle Scholar
  231. Kobayashi, Y., Sawada, J.-I., and Osawa, T., 1978, Isolation and characterization of an inhibitory glycopeptide against guinea pig lymphotoxin from the surface of L cells, Immunochemistry 15: 61–66.PubMedCrossRefGoogle Scholar
  232. Koprowski, H., Herlyn, M., Steplewski, Z., and Sears, H. F., 1981, Specific antigen in serum of patients with colon carcinoma, Science 212: 53–54.PubMedCrossRefGoogle Scholar
  233. Kornfeld, R., 1978, Structure of the oligosaccharides of three glycopeptides from calf thymocyte plasma membranes, Biochemistry 17: 1415–1423.PubMedCrossRefGoogle Scholar
  234. Kornfeld, S., and Kornfeld, R., 1978, Use of lectins in the study of mammalian glycoproteins, in: The Glycoconjugates, Vol. II ( M. I. Horowitz and W. Pigman, eds.), pp. 434–449, Academic Press, New York.Google Scholar
  235. Koskimies, S., 1980, Human lymphoblastoid cell line producing specific antibody against Rh-antigen D, Scand. J. Immunol. 11: 73–77.PubMedCrossRefGoogle Scholar
  236. Krishnamurti, C., Besancon, F., Justesen, J., Poulsen, K., and Ankel, H., 1982, Inhibition of mouse fibroblast interferon by gangliosides, Eur. J. Biochem. 124: 1–6.PubMedCrossRefGoogle Scholar
  237. Kristiansen, T., 1974, Studies on blood group substances. V. Blood group substance A coupled to agarose as an immunosorbent, Biochim. Biophys. Acta 263: 567–574.CrossRefGoogle Scholar
  238. Kruisbeek, A. M., and Astaldi, G. C. B., 1979, Distinct effects of thymic epithelial culture supernatants on T cell properties of mouse thymocytes separated by the use of peanut agglutinin, J. Immunol. 123: 984–991.PubMedGoogle Scholar
  239. Kruisbeek, A. M., Zijlstra, J. J., and Krose, T. M., 1980, Distinct effects of T cell growth factors and thymic epithelial factors on the generation of cytotoxic T lymphocytes by thymocyte subpopulations, J. Immunol. 125: 995–1002.PubMedGoogle Scholar
  240. Kuhns, W. J., 1974, Sponge aggregation: A model for studies on cell—cell interactions, Ann. N.Y. Acad. Sci. 234: 58–74.PubMedCrossRefGoogle Scholar
  241. Kuhns, W. J., and Bramson, S., 1968, Variable behavior of blood group H on Hela cell populations synchronized with thymidine, Nature (London) 219: 938–939.CrossRefGoogle Scholar
  242. Kundu, S. K., Marcus, D. M., and Veh, R. W., 1980, Preparation and properties of antibodies to GD3 and GM, gangliosides, J. Neurochem. 34: 184–188.PubMedCrossRefGoogle Scholar
  243. Kurt, K. A., Shur, B. D., and Lindquist, R. R., 1981, Cytolytic T lymphocyte galactosyltransferase activity, Fed. Proc. 40: 1150.Google Scholar
  244. Kurth, R., 1976, Surface alterations in cells infected by avian leukosis virus, Biomembranes 8: 167–233.PubMedGoogle Scholar
  245. Lai, M. M. C., and Duesberg, P. H., 1972, Differences between the envelope glycoproteins and glycopeptides of avian tumor viruses released from transformed and nontransformed cells, Virology 50: 359–372.PubMedCrossRefGoogle Scholar
  246. LaMont, J. T., Perrotto, J. L., Weiser, M. M., and Isselbacher, K. J., 1974, Cell surface galactosyltransferase and lectin agglutination of thymus and spleen lymphocytes, Proc. Natl. Acad. Sci. USA 71: 3726–3730.PubMedCrossRefGoogle Scholar
  247. Law, S. K., and Levine, R. P., 1977, Interaction between the third complement protein and cell surface macromolecules, Proc. Natl. Acad. Sci. USA 74: 2701–2705.PubMedCrossRefGoogle Scholar
  248. Law, S. K., Lichtenberg, N. A., and Levine, R. P., 1979, Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces, J. Immunol. 123:1388-1394.PubMedGoogle Scholar
  249. Layton, J. E., 1980, Anti-carbohydrate activity of T cell-reactive chicken anti-mouse immunoglobulin antibodies, J. Immunol. 125: 1993–1997.PubMedGoogle Scholar
  250. Lee, G., Aloj, S. M., Brady, R. O., and Kohn, L. D., 1976, The structure and function of glycoprotein hormone receptors: Ganglioside interactions with human chorionic gonadotropin, Biochem. Biophys. Res. Commun. 73: 370–377.PubMedCrossRefGoogle Scholar
  251. Lee, G., Aloj, S. M., and Kohn, L. D., 1977, The structure and function of glycoprotein hormone receptors: Ganglioside interactions with luteinizing hormone, Biochem. Biophys. Res. Commun. 77: 434–441.PubMedCrossRefGoogle Scholar
  252. Leibovich, S. J., and Knyszynski, A., 1980, In vitro recognition of ‘old red“ blood cells by macrophages from syngeneic mice: Characteristics of the macrophage—red blood cell interaction, J. Reticuloendothel. Soc. 27: 411–419.PubMedGoogle Scholar
  253. Lemieux, R. V., Bundle, D. R., and Baker, D. A., 1975, The properties of a “synthetic” antigen related to the human blood-group Lewis a, J. Am. Chem. Soc. 97: 4076–4083.PubMedCrossRefGoogle Scholar
  254. Lerner, A. M., Bailey, E. J., and Tillotson, J. R., 1966, Enterovirus hemagglutination: Inhibition by several enzymes and sugars, J. Immunol. 95: 1111–1115.Google Scholar
  255. Leu, R. W., Eddleston, A. L. W. F., Hadden, J. W., and Good, R. A., 1972, Mechanism of action of migration inhibitory factor (MIF). I. Evidence for a receptor for MIF present on the peritoneal macrophage but not on the alveolar macrophage, J. Exp. Med. 136: 589–603.PubMedCrossRefGoogle Scholar
  256. Levinson, B., Pepper, D., and Belyavin, G., 1969, Substituted sialic acid prosthetic groups as determinants of viral hemagglutination, J. Virol. 3: 477–483.PubMedGoogle Scholar
  257. Liew, F. Y., Sia, D. Y., Parish, C. R., and McKenzie, I. F. C., 1980, MHC-coded determinants on antigen specific suppressor factor for delayed-type hypersensitivity and surface phenotype of cells producing the factor, Eur. J. Immunol. 10: 305–309.PubMedCrossRefGoogle Scholar
  258. Lilien, J., Hermolin, J., and Lipke, P., 1978, Molecular interactions in specific cell adhesion, in: Specificity of Embryological Interactions, Vol. IV ( D. R. Garrod, ed.), pp. 132–155, Chapman & Hall, London.Google Scholar
  259. Lipsick, J. S., Beyer, E. C., Barondes, S. H., and Kaplan, N. O., 1980, Lectins from chicken tissues are mitogenic for Thy-1 negative murine spleen cells, Biochem. Biophys. Res. Commun. 97: 56–61.PubMedCrossRefGoogle Scholar
  260. Lis, H., and Sharon, N., 1973, The biochemistry of plant lectins (phytohemagglutinins), Annu. Rev. Biochem. 42: 541–565.PubMedCrossRefGoogle Scholar
  261. Lis, H., and Sharon, N., 1977, Lectins: Their chemistry and applications to immunology, in: The Antigens, Vol. IV ( M. Sela, ed.), Academic Press, New York, pp. 429–529.Google Scholar
  262. Liu, D. Y., Higgins, T. J., Petschek, K. D., Remold, H. G., and David, J. R., 1978, Fucose and sialic acid are required on the macrophage (M’) for its response to migration inhibitory factor (MIF) and on M4 glycolipids (GSL) for their ability to enhance the MO) response to MIF, Fed. Proc. Abstr. 37: 1400.Google Scholar
  263. Liu, D. Y., Petschek, K. D., Remold, H. G., and David, J. R., 1980, Role of sialic acid in the macrophage glycolipid receptor or MIF, J. Immunol. 124: 2042–2047.PubMedGoogle Scholar
  264. Liu, D. Y., Petschek, K. D., Remold, H. G., and David, J. R., 1982, Isolation of a guinea pig macrophage glycolipid with the properties of the putative migration inhibitory factor receptor, J. Biol. Chem. 257: 159–162.PubMedGoogle Scholar
  265. Lloyd, C. W., and Cook, G. M. W., 1974, On the mechanism of the increased aggregation by neuraminidase of 16C malignant rat dermal fibroblasts in vitro, J. Cell Sci. 15: 575–590.Google Scholar
  266. Lloyd, K. O., and Kabat, E. A., 1968, Immunochemical studies on blood groups. XLI. Proposed structures for the carbohydrate portions of blood group A, B, H, Lewisa, and Lewis“ substances, Proc. Natl. Acad. Sci. USA 61: 1470–1477.PubMedCrossRefGoogle Scholar
  267. London, J., Berrih, S., and Bach, J.-F., 1978, Peanut agglutinin. I. A new tool for studying T lymphocyte subpopulations, J. Immunol. 121: 438–443.PubMedGoogle Scholar
  268. Loos, M., Bitter-Suermann, D., and Dierich, M., 1974, Interaction of the first (C1), the second (C2) and the fourth (C4) component of complement with different preparations of bacterial lipopolysaccharides and with lipid A, J. Immunol. 112: 935–940.PubMedGoogle Scholar
  269. Lotan, R., and Nicolson, G. L., 1978, Membrane glycoproteins: Dynamics and affinity isolation, in: Glycoproteins and Glycolipids in Disease Processes ( E. F. Walborg, Jr., ed.), pp. 256–271, American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  270. Lotan, R., and Nicolson, G. L., 1979, Purification of cell membrane glycoproteins by lectin affinity chromatography, Biochim. Biophys. Acta 559: 329–376.PubMedGoogle Scholar
  271. Lotan, R., Skutelsky, E., Danon, D., and Sharon, N., 1975, The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea), J. Biol. Chem. 250: 8518–8523.PubMedGoogle Scholar
  272. Lunney, J., and Ashwell, G., 1976, Hepatic receptor of avian origin capable of binding specifically modified glycoproteins, Proc. Natl. Acad. Sci. USA 73: 341–343.PubMedCrossRefGoogle Scholar
  273. MacDermott, R. P., Kienker, L. J., and Muchmore, A. W., 1980, Inhibition of spontaneous but not antibody dependent cell mediated cytotoxicity by simple sugars, Fed. Proc. 39: 4893.Google Scholar
  274. MacDonald, H. R., Mach, J. P., Schreyer, M., Zaech, P., and Cerottini, J. C., 1981, Flow cytometric analysis of the binding of Vicia villosa lectin to T lymphoblasts: Lack of correlation with cytolytic function, J. Immunol. 126: 883–886.PubMedGoogle Scholar
  275. McDonough, J., and Lilien, J., 1977, The turnover of a tissue specific cell surface ligand which inhibits lectin induced capping, J. Supramol. Struct. 7: 409–418.PubMedCrossRefGoogle Scholar
  276. McIntire, F. C., Vatter, A. E., Baros, J., and Arnold, J., 1978, Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34, Infect. Immun. 21: 978–988.PubMedGoogle Scholar
  277. McKenzie, I. F. C., and Parish, C. R., 1976, Secretion of la antigens by a subpopulation of T cells which are Ly-1 +, Ly-2, and la, J. Exp. Med. 144: 847–851.PubMedCrossRefGoogle Scholar
  278. McKenzie, I. F. C., Clarke, A., and Parish, C. R., 1977, la antigenic specificities are oligosaccharide in nature: Hapten-inhibition studies, J. Exp. Med. 145: 1039–1053.CrossRefGoogle Scholar
  279. McLean, R. J., and Bosmann, H. B., 1975, Cell—cell interactions: Enhancement of glycosyl transferase ectoenzyme systems during Chlamydomonas gametic contact, Proc. Natl. Acad. Sci. USA 72: 310–313.PubMedCrossRefGoogle Scholar
  280. Maddox, D. E., Shibata, S., and Goldstein, I. J., 1982, Stimulated macrophages express a new glycoprotein receptor reactive with Griffonia simplicifolia I-B4 isolectin, Proc. Natl. Acad. Sci. USA 79: 166–170.PubMedCrossRefGoogle Scholar
  281. Magnani, J. L., Brockhaus, M., Smith, D. F., Steplewski, Z., and Koprowski, H., 1981, A monosialoganglioside is a monoclonal antibody-defined antigen of colon carcinoma, Science 212: 55–56.PubMedCrossRefGoogle Scholar
  282. Magnani, J. L., Nilsson, B., Brockhaus, M., Zopf, D., Steplewski, Z., Koprowski, H., and Ginsburg, V., 1982, A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II, J. Biol. Chem. 257: 14365–14369.PubMedGoogle Scholar
  283. Marchase, R. B., 1977, Biochemical investigations of retinotectal adhesive specificity, J. Cell Biol. 75: 237–257.PubMedCrossRefGoogle Scholar
  284. Marchase, R. B., Pierce, M., and Roth, S., 1977, Complementarity between the ganglioside GM2 and the enzyme GM, synthetase is a possible recognition mechanism in the chick retino-tectal projection, J. Supramol. Struct. Suppl. 1: 32.Google Scholar
  285. Marcus, D. M., Kundu, S. K., and Suzuki, A., 1981, The P blood group system: Recent progress in immunochemistry and genetics, Semin. Hematol. 18: 63–71.PubMedGoogle Scholar
  286. Marcus, R. L., Shin, H. S., and Mayer, M. M., 1971, An alternate complement pathway: C-3 cleaving activity, not due to C4, 2a, on endotoxic lipopolysaccharide after treatment with guinea pig serum; relation to properdin, Proc. Natl. Acad. Sci. USA 68: 1351–1354.PubMedCrossRefGoogle Scholar
  287. Marsh, W. L., 1961, Anti-i: A cold antibody defining the Ii relationship in human red cells, Br. J. Haematol. 7: 200–209.PubMedCrossRefGoogle Scholar
  288. Marticorena, P., Artzt, K., and Bennett, D., 1978, Relationship of F9 antigen and genes of the T/t complex, Immunogenetics 7: 337–347.PubMedCrossRefGoogle Scholar
  289. Martin, G. R., Grabel, L. B., and Rosen, S. D., 1980, Use of teratocarcinoma cells as a model systems for studying the cell surface during early mammalian development. in: The Cell Surface: Mediator of Developmental Processes ( S. Subtelny and N. K. Wes-sells, eds.), pp. 325–348, Academic Press, New York.Google Scholar
  290. Matsuuchi, L., Wims, L. A., and Morrison, S. L., 1981a, A variant of the dextran-binding mouse plasmacytoma J558 with altered glycosylation of its heavy chain and decreased reactivity with polymeric dextran, Biochemistry 20: 4827–4835.PubMedCrossRefGoogle Scholar
  291. Matsuuchi, L., Sharon, J., and Morrison, S. L., 1981b, An analysis of heavy chain glycopeptides of hybridoma antibodies: Correlation between antibody specificity and sialic acid content, J. Immunol. 127: 2188–2190.PubMedGoogle Scholar
  292. Milewicz, C., Miller, H. C., and Esselman, W. J., 1976, Membrane expression of Thy-1.2 and GM, ganglioside on differentiating T lymphocytes, J. Immunol. 117: 1774–1780.PubMedGoogle Scholar
  293. Mittal, K.-K., Terasaki, P. I., Springer, G. F., Desai, P. R., McIntire, F. C., and Hirata, A. A., 1973, Inhibition of anti-HL-A alloantisera by glycoproteins, polysaccharides, and lipopolysaccharides from diverse sources, Transplant. Proc. 5: 499–506.PubMedGoogle Scholar
  294. Mizoguchi, A., Mizuochi, T., and Kobata, A., 1982, Structures of the carbohydrate moieties of secretory component purified from human milk, J. Biol. Chem. 257: 9612–9621.PubMedGoogle Scholar
  295. Mizuno, Y., Kozutsumi, Y., Kawasaki, T., and Yamashina, I., 1981, Isolation and characterization of a mannan-binding protein from rat liver, J. Biol. Chem. 256: 4247–4252.PubMedGoogle Scholar
  296. Mizuochi, T., Yamashita, K., Fukikawa, K., Kisiel, W., and Kobata, A., 1979, The carbohydrate of bovine prothrombin. Occurrence of Gal 13 1–3 GIcNAc grouping in asparagine-linked sugar chains. J. Biol. Chem. 254: 6419–6425.PubMedGoogle Scholar
  297. Momoi, M., Kennet, R. H., and Glick, M. C., 1980, A surface glycoprotein as a human neuroblastoma antigen detected by monoclonal antibodies, Prog. Cancer Res. Ther. 12: 177–181.Google Scholar
  298. Morgan, W. T. J., 1970, Molecular aspects of human blood-group specificity, Ann. N.Y. Acad. Sci. 169: 118–133.PubMedCrossRefGoogle Scholar
  299. Morishima, Y., Ogata, S.-I., Collins, N. H., Dupont, B., and Lloyd, K. O., 1982, Carbohydrate differences in human high molecular weight antigens of B- and T-cell lines, Immunogenetics 15: 529–535.PubMedCrossRefGoogle Scholar
  300. Morita, A., Tsao, D., and Kim, Y. S., 1980, Identification of cholera toxin binding glyco- proteins in rat intestinal microvillus membranes, J. Biol. Chem. 255: 2549–2553.PubMedGoogle Scholar
  301. Morell, A. G., Gregoriadis, G., Scheinberg, I. H., Hickman, J., and Ashwell, G., 1971, The role of sialic acid in determining the survival of glycoproteins in circulation, J. Biol. Chem. 246: 1461–1467.PubMedGoogle Scholar
  302. Morrison, D. C., and Kline, L. F., 1977, Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS), J. Immunol. 118: 362–368.PubMedGoogle Scholar
  303. Muchmore, A. V., and Blaese, R. M., 1980, Evidence that monocyte mediated cellular recognition phenomena are mediated by receptors with specificity for simple oligosaccharides, in: Macrophage Recognition in Immunity ( E. R. Unanue and A. S. Rosenthal, eds.), pp. 505–517, Academic Press, New York.Google Scholar
  304. Muchmore, A. V., Decker, J. M., and Blaese, R. M., 1980, Evidence that specific oligosaccharides block early events necessary for the expression of antigen-specific proliferation by human lymphocytes, J. Immunol. 125: 1306–1311.PubMedGoogle Scholar
  305. Mullin, B. R., Fishman, P. H., Lee, G., Aloj, S. M., Ledley, F. D., Winand, R. J., Kohn, L. D., and Brady, R. O., 1976a, Thyrotropin—ganglioside interactions and their relationship to the structure and function of thyrotropin receptors, Proc. Natl. Acad. Sci. USA 73: 842–846.PubMedCrossRefGoogle Scholar
  306. Mullin, B. R., Aloj, S. M., Fishman, P. H., Lee, G., Kohn, L. D., and Brady, R. O., 1976b, Cholera toxin interaction with thyrotropin receptors on thyroid plasma membranes, Proc. Natl. Acad. Sci. USA 73: 1679–1683.PubMedCrossRefGoogle Scholar
  307. Muramatsu, T., and Nathenson, S. G., 1970, Studies on the carbohydrate portion of membrane-located mouse H-2 alloantigens, Biochemistry 9: 4875–4883.PubMedCrossRefGoogle Scholar
  308. Naiki, M., and Marcus, D. M., 1977, Binding of N-acetylgalactosamine-containing compounds by a human IgM paraprotein, J. Immunol. 119: 537–539.PubMedGoogle Scholar
  309. Naiki, M., Marcus, D. M., and Ledeen, R., 1974, Properties of antisera to ganglioside GM, and asialo-GM,, J. Immunol. 113: 84–93.PubMedGoogle Scholar
  310. Naiki, M., Ikuta, K., Fujii, Y., and Kato, S., 1981, Is N-glycolylneuraminic acid a tumor associated antigenic determinant in avian as well as human?, in: Glycoconjugates ( T. Yamakawa, T. Osawa, and S. Handa, eds.), pp. 185–186, Japan Societies Scientific Press, Tokyo.Google Scholar
  311. Nair, R. M. G., Ponce, B., and Fudenberg, H. H., 1978, Interactions of radiolabeled tuftsin with human neutrophils, Immunochemistry 15: 901–907.PubMedCrossRefGoogle Scholar
  312. Nakahara, K., Ohashi, T., Oda, T., Hirano, T., Kasai, M., Okumura, K., and Tada, T., 1980, Asialo GM, as a cell-surface marker detected in acute lymphoblastic leukemia, N. Engl. J. Med. 302: 674–677.PubMedCrossRefGoogle Scholar
  313. Nakayasu, M., Terada, M., Tamura, G., and Sugimura, T., 1980, Induction of differentiation of human and murine myeloid leukemia cells in culture by tunicamycin, Proc. Natl. Acad. Sci. USA 77: 409–413.PubMedCrossRefGoogle Scholar
  314. Neufeld, E. F., and Ashwell, G., 1980, Carbohydrate recognition systems for receptor-mediated pinocytosis, in: The Biochemistry of Glycoproteins and Proteoglycans ( W. J. Lennarz, ed.), pp. 241–266, Plenum Press, New York.CrossRefGoogle Scholar
  315. Neufeld, E. F., Sando, G. N., Garvin, A. J., and Rome, L. H., 1977, The transport of lysosomal enzymes, J. Supramol. Struct. 6: 95–101.PubMedCrossRefGoogle Scholar
  316. Nicola, N. A., Burgess, A. W., Staber, F. G., Johnson, G. R., Metcalf, D., and Battye, F. L., 1980, Differential expression of lectin receptors during hemopoietic differentiation: Enrichment for granulocyte—macrophage progenitor cells, J. Cell. Physiol. 103: 217–237.PubMedCrossRefGoogle Scholar
  317. Nicolson, G. L., 1974, The interactions of lectins with animal cell surfaces, Int. Rev. Cytol. 39: 89–190.PubMedCrossRefGoogle Scholar
  318. Nashimaki, T., Kano, K., and Milgrom, F., 1979, Hanganutzui—Deicher antigen and antibody in pathologic sera and tissues, J. Immunol. 122: 2314–2318.Google Scholar
  319. Nishioka, K., Constantopoulos, A., Satoh, P. S., and Najjar, V. A., 1972, The characteristics, isolation and synthesis of the phagocytosis stimulating peptide tuftsin, Biochem. Biophys. Res. Commun. 47: 172–179.PubMedCrossRefGoogle Scholar
  320. Nose, M., and Wigzell, H., 1983, Biological significance of carbohydrate chains on monoclonal antibodies, Proc. Natl. Acad. Sci. USA 80: 6632–6636.PubMedCrossRefGoogle Scholar
  321. Nowak, T. P., Kobiler, D., Roel, L. E., and Barondes, S. H., 1977, Developmentally reg- ulated lectin from embryonic chick pectoral muscle, J. Biol. Chem. 252: 6026–6030.PubMedGoogle Scholar
  322. Nowinski, R., Berglund, C., Lane, J., Lostrum, M., Bernstein, I., Young, W., Hakomori, S.-I., Hill, L., and Cooney, M., 1980, Human monoclonal antibody against Forssman antigen, Science 210: 537–539.PubMedCrossRefGoogle Scholar
  323. Nudelman, E., Hakomori, S.-L, Knowles, B. B., Solter, D., Rowinski, R. C., Tam, M. R., and Young, W. W., Jr., 1980, Monoclonal antibody directed to the stage-specific embryonic antigen(SSEA-1) reacts with a branched glycosphingolipid similar in structure to I antigen, Biochem. Biophys. Res. Commun. 97: 443–451.PubMedCrossRefGoogle Scholar
  324. Nudelman, E., Hakomori, S.-I., Kannagi, R., Levery, S., and Yeh, M.-Y., 1982, Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2, J. Biol. Chem. 257: 12752–12756.PubMedGoogle Scholar
  325. Nydegger, U. E., Fearon, D. T., and Austen, K. F., 1978, Autosomal locus regulates inverse relationship between sialic acid content and capacity of mouse erythrocytes to activate human alternative complement pathway, Proc. Natl. Acad. Sci. USA 75: 6078–6082.PubMedCrossRefGoogle Scholar
  326. Oates, M. D. G., Rosbottom, A. C., and Schrager, J., 1974, Further investigations into the structure of human gastric mucin: The structural configuration of the oligosaccharide chains, Carbohydr. Res. 34: 115–137.PubMedCrossRefGoogle Scholar
  327. Oikawa, T., Yanagimachi, R., and Nicolson, G. L., 1973, Wheat germ agglutinin blocks mammalian fertilization, Nature (London) 241: 256–259.CrossRefGoogle Scholar
  328. O’Keefe, D., and Ashman, L., 1982, Peanut agglutinin: A marker for normal and leukemic cells of the monocyte lineage, Clin. Exp. Immunol. 48: 329–338.PubMedGoogle Scholar
  329. O’Neill, H. C., and Parish, C. R., 1981, Monoclonal antibody detection of two classes of H-2Kk molecules, Mol. Immunol. 18: 713–722.PubMedCrossRefGoogle Scholar
  330. O’Neill, H. C., Parish, C. R., and Higgins, T. J., 1981, Monoclonal antibody detection of carbohydrate-defined and protein-defined H-2Kk antigens, Mol. Immunol. 18: 663–675.PubMedCrossRefGoogle Scholar
  331. Oriol, R., Baur, M. P., Danilovs, J., and Mayr, W., 1980, Combined ABH—Lewis—secretor antigens, in: Histocompatibility Testing ( P. I. Terasaki, ed.), pp. 585–589, UCLA Tissue Typing Laboratory, Los Angeles.Google Scholar
  332. Painter, R. G., and White, A., 1976, Effect of concanavalin A on expression of cell surface sialyltransferase activity of mouse thymocytes, Proc. Natl. Acad. Sci. USA 73: 837–841.PubMedCrossRefGoogle Scholar
  333. Pangburn, M. K., and Muller-Eberhard, H. J., 1978, Complement C3 convertase: Cell surface restriction of 131H control and generation of restriction of neuraminidase-treated cells, Proc. Natl. Acad. Sci. USA 75: 2416–2420.PubMedCrossRefGoogle Scholar
  334. Parish, C. R., 1977, Simple model for self—non-self discrimination in invertebrates, Nature (London) 267: 711–713.CrossRefGoogle Scholar
  335. Parish, C. R., and McKenzie, I. F. C., 1977, Mitogens and T-independent antigens stimulate T lymphocytes to secrete la antigens, Cell. Immunol. 33: 134–144.PubMedCrossRefGoogle Scholar
  336. Parish, C. R., and McKenzie, I. F. C., 1981, Carbohydrate-defined antigens controlled by the I region, in: Current Trends in Histocompatibility ( R. A. Reisfeld and S. Ferrone, eds.), pp. 231–263, Plenum Press, New York.Google Scholar
  337. Parish, C. R., Freeman, R. R., McKenzie, I. F. C., Cheers, C., and Cole, G. A., 1979, Ia antigens in serum during different murine infections, Infect. Immun. 26: 422–426.PubMedGoogle Scholar
  338. Parish, C. R., Higgins, T. J., and McKenzie, I. F. C., 1981, Lymphocytes express Ia antigens of foreign haplotype following treatment with neuraminidase, Immunogenetics 12: 120.CrossRefGoogle Scholar
  339. Parish, C. R., Higgins, T. J., and McKenzie, I. F. C., 1982, Carbohydrate Ia antigens in mouse and man, in: la Antigens ( S. Ferrone and C. S. David, eds.), pp. 143–160, CRC Press, Boca Raton, Fla.Google Scholar
  340. Park, M. S., Oriol, R., Terasaki, P. I., and Nakata, S., 1980, Lewis-related specificities of the 8th workshop, in: Histocompatibility Testing ( P. I. Terasaki, ed.), pp. 929–930, UCLA Tissue Typing Laboratory, Los Angeles.Google Scholar
  341. Patt, L. M., Endres, R. O., Lucas, D. O., and Grimes, W. J., 1976, Ectogalactosyltransferase studies in fibroblasts and concanavalin A-stimulated lymphocytes, J. Cell Biol. 68: 799–802.PubMedCrossRefGoogle Scholar
  342. Perlmutter, R. M., Hansburg, D., Briles, D. E., Nicolotti, R. A., and Davie, J. M., 1978, Subclass restriction of murine anti-carbohydrate antibodies, J. Immunol. 121: 566–572.PubMedGoogle Scholar
  343. Pierce, M., 1982, Quantification of ganglioside GM, synthetase activity on intact chick neural retinal cells, J. Cell Biol. 93: 76–81.PubMedCrossRefGoogle Scholar
  344. Pierce, M., Turley, E. A., and Roth, S., 1981, Cell surface glycosyltransferase activities, Int. Rev. Cytol. 65: 1–47.CrossRefGoogle Scholar
  345. Pierce, N. F., 1973, Differential inhibitory effects of cholera toxoids and ganglioside on the enterotoxins of Vibrio cholerae and Escherichia coli, J. Exp. Med. 137: 1009–1023.PubMedCrossRefGoogle Scholar
  346. Podolsky, D. K., and Weiser, M. M., 1975, Galactosyltransferase activities in human sera: Detection of a cancer-associated isoenzyme, Biochem. Biophys. Res. Commun. 65: 545–551PubMedCrossRefGoogle Scholar
  347. Podolsky, D. K., Weiser, M. M., Westwood, J. C., and Gammon, M., 1977, Cancer-associated serum galactosyltransferase activity, J. Biol. Chem. 252: 1807–1813.PubMedGoogle Scholar
  348. Podolsky, D. K., Weiser, M. M., and Isselbacher, K. J., 1978, Inhibition of growth of transformed cells and tumors by an endogenous acceptor of galactosyltransferase, Proc. Natl. Acad. Sci. USA 75: 4426–4430.PubMedCrossRefGoogle Scholar
  349. Pompecki, R., Shively, J. E., and Todd, C. W., 1981, Demonstration of elevated anti Lewis antibodies in sera of cancer patients using a carcinoembryonic antigen—polyethylene glycol immunoassay, Cancer Res. 41: 3023–3027.Google Scholar
  350. Poste, G., Kirsh, R., and Filder, I. J., 1979a, Cell surface receptors for lymphokines, I. The possible role of glycolipids as receptors for macrophage migration inhibitory factor (MIF) and macrophage activation factor (MAF), Cell. Immunol. 44: 71–88.PubMedCrossRefGoogle Scholar
  351. Poste, G., Allen, H., and Matta, K. L., 1979b, Cell surface receptors for lymphokines. II. Studies on the carbohydrate composition of the MIF receptor on macrophages using synthetic saccharides and plant lectins, Cell. Immunol. 44: 89–98.PubMedCrossRefGoogle Scholar
  352. Potter, M., 1977, Antigen-binding myeloma proteins of mice, Adv. Immunol. 25: 141–211.PubMedCrossRefGoogle Scholar
  353. Prieels, J. P., Pizzo, S. V., Glasgow, L. R., Paulson, J. C., and Hill, R. L., 1978, Hepatic receptor that specifically binds oligosaccharides containing fucosyl a-1–3 N-acetylglu-cosamine linkages, Proc. Natl. Acad. Sci. USA 75: 2215–2219.PubMedCrossRefGoogle Scholar
  354. Prohaska, R., Koerner, T. A. W., Jr., Armitage, I. M., and Furthmayr, H., 1981, Chemical and carbon-13 nuclear magnetic resonance studies of the blood group M and N active sialoglycopeptides from human glycophorin A, J. Biol. Chem. 256: 5781–5791.PubMedGoogle Scholar
  355. Prokop, O., 1974, Protectins: Past, present problems, and perspectives, Ann. N.Y. Acad. Sci. 234:228–231.PubMedCrossRefGoogle Scholar
  356. Pukel, C. S., Lloyd, K. O., Travassos, L. R., Dippold, W. G., Oettgen, H. F., and Old, L. J., 1982, Gp3, a promiment ganglioside of human melanoma: Detection and characterization by mouse monoclonal antibody, J. Exp. Med. 155: 1133–1147.PubMedCrossRefGoogle Scholar
  357. Rasanen, L., 1981, Adherence of bacterial to human lymphocyte subpopulations and the role of monosaccharides in bacterial binding, Cell. Immunol. 58: 19–28.PubMedCrossRefGoogle Scholar
  358. Rauvala, H., and Finne, J., 1979, Structural similarity of the terminal carbohydrate sequences of glycoproteins and glycolipids, FEBS Lett. 97: 1–8.PubMedCrossRefGoogle Scholar
  359. Rauvala, H., Carter, W. G., and Hakomori, S.-I., 1981, Studies on cell adhesion and recognition. II. The occurrence of a-mannosidase at the fibroblast cell surface and its possible role in cell recognition, J. Cell Biol. 88: 149–159.PubMedCrossRefGoogle Scholar
  360. Reading, C. L., 1982a, Analysis of tumor cell lectin receptors using a HPLC-enzyme assay, J. Cell. Biochem. Suppl. 6: 72.Google Scholar
  361. Reading, C. L., 1982b, Theory and methods for in vitro immunization and monoclonal antibody production, J. Immunol. Methods 53: 261–291.PubMedCrossRefGoogle Scholar
  362. Reading, C. L., Belloni, P. N., and Nicolson, G. L., 1980a, Selection and in vivo properties of lectin-attachment variants of malignant lymphosarcoma cell lines, J. Natl. Cancer Inst. 64: 1241–1249.PubMedGoogle Scholar
  363. Reading, C. L., Brunson, K. W., Torrianni, M., and Nicolson, G. L., 1980b, Malignancies of murine metastatic lymphosarcoma cell lines and clones correlate with decreased cell surface display of RNA tumor virus envelope glycoprotein gp70, Proc. Natl. Acad. Sci. USA 77: 5943–5947.PubMedCrossRefGoogle Scholar
  364. Reichert, C. M., and Goldstein, I. J., 1979, The immunochemistry of antibodies sharing concanavalin A’s anti-mannosyl binding specificity, J. Immunol. 122: 1138–1145.PubMedGoogle Scholar
  365. Reisner, Y., and Sharon, N., 1978, Lectin receptors as markers for lymphocyte subpopulations in mouse and man, in: Molecular Mechanisms of Biological Recognition ( M. Balaban, ed.), pp. 95–106, Elsevier, Amsterdam.Google Scholar
  366. Reisner, Y, Linker-Israeli, M., and Sharon, N., 1976, Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin, Cell. Immunol. 25: 129–134.PubMedCrossRefGoogle Scholar
  367. Reisner, Y., Itzicovitch, L., Meshorer, A., and Sharon, N., 1978, Hemopoietic stem cell transplantation using mouse bone marrow and spleen cells fractionated by lectins, Proc. Natl. Acad. Sci. USA 75: 2933–2936.PubMedCrossRefGoogle Scholar
  368. Reisner, Y., Biniaminov, M., Rosenthal, E., Sharon, N., and Ramot, B. O., 1979, Interaction of peanut agglutinin with normal human lymphocytes and with leukemic cells, Proc. Natl. Acad. Sci. USA 76: 447–451.PubMedCrossRefGoogle Scholar
  369. Remold, H. G., 1973, Requirement for a-L-fucose on the macrophage membrane receptor for MIF, J. Exp. Med. 138: 1065–1076.PubMedCrossRefGoogle Scholar
  370. Remold, H. G., and David, J. R., 1971, Further studies on migration inhibitory factor (MIF): Evidence for its glycoprotein nature, J. Immunol. 107: 1090–1098.PubMedGoogle Scholar
  371. Richardson, C. L., Baker, S. R., Morre, D. J., and Keenan, T. W., 1975, Glycosphingolipid synthesis and tumorigenesis: A role for the Golgi apparatus in the origin of specific receptor molecules of the mammalian cell surface, Biochim. Biophys. Acta 417: 175–184.PubMedGoogle Scholar
  372. Riedl, M., Forster, O., Rumpold, H., and Bernheimer, H., 1982, A ganglioside-dependent cellular binding mechanism in rat macrophages, J. Immunol. 128: 1205–1210.PubMedGoogle Scholar
  373. Rocklin, R. E., 1976, Role of monosaccharides in the interaction of two lymphocyte mediators with their target cells, J. Immunol. 116: 816–820.PubMedGoogle Scholar
  374. Roder, J. C., 1980, Different genes regulate tumor cell recognition and cytolysis by NK cells in the mouse, in: Genetic Control of Natural Resistance to Infection and Malignancy ( E. Skamene, P. A. L. Kongshavn, and M. Landy, eds.), pp. 405–412, Academic Press, New York.Google Scholar
  375. Roder, J. C., Rosen, A., Fenyo, E. M., and Troy, F. A., 1979, Target—effector interaction in the natural killer cell system: Isolation of target structures, Proc. Natl. Acad. Sci. USA 76: 1405–1409.PubMedCrossRefGoogle Scholar
  376. Roelants, G. E., London, J., Mayor-Withey, K. S., and Serrano, B., 1979, Peanut agglutinin. II. Characterization of the Thy-1, Tla and Ig phenotype of peanut agglutinin-positive cells in adult, embryonic and nude mice using double immunofluorescence, Eur. J. Immunol. 9: 139–145.PubMedCrossRefGoogle Scholar
  377. Rogentine, G. N., Jr., and Plocinik, B. A., 1974, Carbohydrate inhibition studies of the naturally occurring human antibody to neuraminidase-treated human lymphocytes, J. Immunol. 113: 848–858.PubMedGoogle Scholar
  378. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids 5: 270–297.PubMedCrossRefGoogle Scholar
  379. Rosen, S. D., Kafka, J. A., Simpson, D. L., and Barondes, S. H., 1973, Developmentally regulated, carbohydrate-binding protein in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 70: 2554–2557.PubMedCrossRefGoogle Scholar
  380. Rosen, S. D., Simpson, D. L., Rose, J. E., and Barondes, S. H., 1974, Carbohydrate-binding protein from Polysphondylium pallidum implicated in intercellular adhesion, Nature (London) 252: 128, 149–151.Google Scholar
  381. Rosen, S. D., Kaur, J., Clark, D. L., Pardos, B. T., and Frazier, W. A., 1979, Purification and characterization of multiple species (isolectins) of a slime mold lectin implicated in intercellular adhesion, J. Biol. Chem. 254: 9408–9415.PubMedGoogle Scholar
  382. Rosenfelder, G., Van Eijk, R. V. W., and Muhlradt, P. F., 1979, Metabolic carbohydrate-labelling of glycolipids from mouse splenocytes, Eur. J. Biochem. 97: 229–237.PubMedCrossRefGoogle Scholar
  383. Rosenfelder, G., Herbst, H., and Braun, D. G., 1980, Glycolipids as markers of murine T and B lymphoblastoid tumour cell lines, FEBS Lett. 114: 213–218.PubMedCrossRefGoogle Scholar
  384. Rostam-Abadi, H., and Pistole, T. G., 1982, Lipopolysaccharide-binding lectin from the horseshoe crab, Limulus polyphemus, with specificity for 2-keto-3-deoxyoctonate (KDO), Dev. Comp. Immunol. 6: 209–218.PubMedCrossRefGoogle Scholar
  385. Roth, S., and White, D., 1972, Intercellular contact and cell-surface galactosyl transferase activity, Proc. Natl. Acad. Sci. USA 69: 485–489.PubMedCrossRefGoogle Scholar
  386. Roth, S., McGuire, E. J., and Roseman, S., 1971, Evidence for cell-surface glycosyltransferases: Their potential role in cellular recognition, J. Cell Biol. 51: 536–547.PubMedCrossRefGoogle Scholar
  387. Rothenberg, B. E., 1978, The self recognition concept: An active function for the molecules of the major histocompatibility complex based on the complementary interaction of protein and carbohydrate, Dev. Comp. Immunol. 2: 23–37.PubMedCrossRefGoogle Scholar
  388. Rovis, L., Kabat, E. A., and Potter, M., 1972, Immunological studies on a mouse myeloma protein having specific affinity for 2-acetamido-2-deoxy-D-mannose, Carbohydr. Res. 23: 223–227.PubMedCrossRefGoogle Scholar
  389. Rutz, R., and Lilien, J., 1979, Functional characterization of an adhesion component from the embryonic chick neural retina, J. Cell Sci. 36: 323–342.PubMedGoogle Scholar
  390. Sadler, J. E., Paulson, J. C., and Hill, R. L., 1979, The role of sialic acid in the expression of human MN blood group antigens, J. Biol. Chem. 254: 2112–2119.PubMedGoogle Scholar
  391. Sanderson, A. R., Cresswell, P., and Welsh, K. I., 1971, Involvement of carbohydrate in the immunochemical determinant area of HLA substances, Nature New Biol. 230: 812.Google Scholar
  392. Sandrin, M. S., McKenzie, I. F. C., Higgins, T. J., and Parish, C. R., 1981a, Isolation and characterization of low molecular weight la-like antigens from normal human serum, Mol. Immunol. 18: 513–519.PubMedCrossRefGoogle Scholar
  393. Sandrin, M. S., Henning, M. M., Vaughan, H. A., McKenzie, I. F. C., and Parish, C. R., 1981b, Serum Ia levels during tumor growth in mice and humans, J. Natl. Cancer Inst. 66: 279–283.PubMedGoogle Scholar
  394. Sarkar, S., and Menge, A. C., 1977, Cell antigens recognized by rabbit antibodies specific for oligomannosyl determinants, J. Supramol. Struct. 6: 617–632.PubMedCrossRefGoogle Scholar
  395. Sawada, J. I., Shioiri-Nakano, K., and Osawa, T., 1976, Cytotoxic activity of purified guinea pig lymphotoxin against various cell lines, Jpn. J. Exp. Med. 46: 263–267.PubMedGoogle Scholar
  396. Sawada, J.-I., Kobayashi, Y., and Osawa, T., 1977, The effect of pulse treatment of target cells with guinea pig lymphotoxin and the nature of its binding to target cells, Jpn. J. Exp. Med. 47: 93–98.PubMedGoogle Scholar
  397. Schengrund, C. L., and Rosenberg, A., 1970, Intracellular location and properties of bovine brain sialidase, J. Biol. Chem. 245: 6196–6200.PubMedGoogle Scholar
  398. Schengrund, C. L., Jensen, D. S., and Rosenberg, A., 1972, Localization of sialidase in the plasma membrane of rat liver cells, J. Biol. Chem. 247: 2742–2746.PubMedGoogle Scholar
  399. Schengrund, C. L., Lausch, R. N., and Rosenberg, A., 1973, Sialidase activity in transformed cells, J. Biol. Chem. 248: 4424–4428.PubMedGoogle Scholar
  400. Schengrund, C. L., Rosenberg, A., and Repman, M. A., 1976, Ecto-ganglioside-sialidase activity of herpes simplex virus-transformed hamster embryo fibroblasts, J. Cell Biol. 70: 555–561.PubMedCrossRefGoogle Scholar
  401. Schlesinger, P. H., Rodman, J. S., Frey, M., Lang, S., and Stahl, P., 1976, Clearance of lysosomal hydrolases following intravenous infusion. The role of liver in the clearance of 3-glucuronidase and N-acetyl-3-D-glucosaminidase, Arch. Biochem. Biophys. 177: 606–614.PubMedCrossRefGoogle Scholar
  402. Schlesinger, P. H., Doebber, T. W., Mandrell, B. F., White, R., DeSchryver, C., Rodman, J. S., Miller, M. J., and Stahl, P., 1978a, Plasma clearance of glycoproteins with terminal mannose and N-acetylglucosamine by liver nonparenchymal cells, Biochem. J. 176: 103–109.PubMedGoogle Scholar
  403. Schlesinger, P. H., Rodman, J. S., Miller, J., Enders, G. H., and Stahl, P., 1978b, Mannose glucose specific receptor on alveolar macrophages, Fed. Proc. 37: 1655.Google Scholar
  404. Schnaar, R. L., Weigel, P. H., Kuhlenschmidt, M. S., Chuan Lee, Y., and Roseman, S., 1978, Adhesion of chicken hepatocytes to polyacrylamide gels derivatized with N-acetylglucosamine, J. Biol. Chem. 253: 7940–7951.PubMedGoogle Scholar
  405. Schwarting, G. A., and Gajewski, A., 1981, Glycolipids of murine lymphocyte subpopulations: A defect in the levels of sialidase-sensitive sialosylated asialo GM, in beige mouse lymphocytes, J. Immunol. 126: 2403–2407.PubMedGoogle Scholar
  406. Schwarting, G. A., and Marcus, D. M., 1979, Cell surface glycosphingolipids of normal and leukemic human lymphocytes, Clin. Immunol. Immunopathol. 14: 121–129.PubMedCrossRefGoogle Scholar
  407. Schwarting, G. A., and Summers, A., 1980, Gangliotetraosylceramide is a T cell differentiation antigen associated with natural cell-mediated cytotoxicity, J. Immunol. 124: 1691–1694.PubMedGoogle Scholar
  408. Sela, B.-A., Wang, J. L., and Edelman, G. M., 1975, Antibodies reactive with cell surface carbohydrates, Proc. Natl. Acad. Sci. USA 72: 1127–1131.PubMedCrossRefGoogle Scholar
  409. Sharon, N., Lis, H., 1972, Lectins: Cell-agglutinating and sugar-specific proteins, Science 177: 949–959.PubMedCrossRefGoogle Scholar
  410. Sharon, N., and Lis, H., 1980, Glycoproteins, in: The Proteins, Vol. V ( H. Neurath and R. L. Hill, eds.), pp. 1–144, Academic Press, New York.Google Scholar
  411. Shepherd, V. L., Lee, Y. C., Schlesinger, P. H., and Stahl, P. D., 1981, L-Fucose-terminated glycoconjugates are recognized by pinocytosis receptors on macrophages, Proc. Natl. Acad. Sci. USA 78: 1019–1022.PubMedCrossRefGoogle Scholar
  412. Shortridge, K. F., Biddle, F., and Pepper, D. S., 1972, Rubella virus nonspecific hemagglutination inhibitor: Evidence for the role of glycolipid bound to low density (3) Lipoprotein, Clin. Chim. Acta 42: 285–294.CrossRefGoogle Scholar
  413. Shur, B. D., 1977a, Cell-surface glycosyltransferases in gastrulating chick embryos. I. Temporally and spatially specific patterns of four endogenous glycosyltransferase activities, Dey. Biol. 58: 23–39.CrossRefGoogle Scholar
  414. Shur, B. D., 1977b, Cell-surface glycosyltransferases in gastrulating chick embryos. H. Biochemical evidence for a surface localization of endogenous glycosyltransferase activities, Dey. Biol. 58: 40–55.CrossRefGoogle Scholar
  415. Shur, B. D., 1982a, Cell surface glycosyltransferase activities during fertilization and early embryogenesis, in: The Glycoconjugates, Vol. III, Part A ( M. I. Horowitz, ed.), pp. 146–186, Academic Press, New York.Google Scholar
  416. Shur, B. D., 1982b, Evidence that galactosyltransferase is a surface receptor for poly(N)acetyllactosamine glycoconjugates on embryonal carcinoma cells, J. Biol. Chem. 257: 6871–6878.PubMedGoogle Scholar
  417. Shur, B. D., and Bennett, D., 1979, A specific defect in galactosyltransferase regulation on sperm bearing mutant alleles of the T/t Locus, Dev. Biol. 71: 243–259.PubMedCrossRefGoogle Scholar
  418. Shur, B. D., and Hall, N. G., 1982a, Sperm surface galactosyltransferase activities during in vitro capacitation, J. Cell Biol. 95: 567–573.PubMedCrossRefGoogle Scholar
  419. Shur, B. D., and Hall, N. G., 1982b, A role for mouse sperm surface galactosyltransferase in sperm binding to the egg zona pellucida, J. Cell Biol. 95: 574–579.PubMedCrossRefGoogle Scholar
  420. Shur, B. D., and Roth, S., 1975, Cell surface glycosyltransferases, Biochim. Biophys. Acta 415: 473–512.PubMedGoogle Scholar
  421. Sia, D., and Parish, C. R., 1981, Anti-self receptors, Immunogenetics 12: 587–599.PubMedCrossRefGoogle Scholar
  422. Sigel, M. M., 1974, Primitive immunoglobulins and other proteins with binding functions in the shark, Ann. N.Y. Acad. Sci. 234: 198–215.PubMedCrossRefGoogle Scholar
  423. Simpson, D. L., Rosen, S. D., and Barondes, S. H., 1975, Pallidin: Purification and characterization of a carbohydrate-binding protein from Polysphondium palladium implicated in intercellular adhesion, Biochim. Biophys. Acta 412: 109–119.PubMedGoogle Scholar
  424. Simpson, D. L., Thorne, D. R., and Loh, H. H., 1978, Lectins: Endogenous carbohydrate-binding proteins from vertebrate tissues: Functional role in recognition processes?, Life Sci. 22: 727–748.PubMedCrossRefGoogle Scholar
  425. Simpson, L. L., and Rapport, M. M., 1970, Ganglioside inactivation of botulinum toxin, J. Neurochem. 18: 1341–1343.CrossRefGoogle Scholar
  426. Simpson, L. L., and Rapport, M. M., 1971, The binding of botulinum toxin to membrane lipids: Sphingolipids, steroids and fatty acids, J. Neurochem. 18: 1751–1759.PubMedCrossRefGoogle Scholar
  427. Slomiany, B. L., and Meyer, K., 1973, Oligosaccharides produced by acetolysis of blood group active (A + H) sulfated glycoproteins from hog gastric mucin, J. Biol. Chem. 248: 2290–2295.PubMedGoogle Scholar
  428. Sly, W. S., 1977, Receptor-mediated uptake and clearance of lysosomal enzymes, J. Supramol. Struct. Suppl. 1: 36.Google Scholar
  429. Smets, L. A., van Beek, W. P., Collard, J. G., Temmink, H., van Gils, B., and Emmelot, P., 1975, Comparative evaluation of plasma membrane alterations associated with neoplasia, in: Cellular Membranes and Tumor Cell Behavior, pp. 269–286, 28th Annu. Symp. Fundamental Cancer Research, Williams & Wilkins, Baltimore.Google Scholar
  430. Smith, D. F., and Ginsburg, V., 1980, Antibodies against sialyloligosaccharides coupled to protein, J. Biol. Chem. 255: 55–59.PubMedGoogle Scholar
  431. Sneath, P. H. A., and Lederberg, J., 1960, Inhibition by periodate of mating in Escherichia coli K-12, Proc. Natl. Acad. Sci. USA 47: 86–90.CrossRefGoogle Scholar
  432. Soderhall, K., 1981, Fungal cell wall ß-1,3-glucans induce clotting and phenoloxidase attachment to foreign surfaces of crayfish hemocyte lysate, Dev. Comp. Immunol. 5: 565–573.PubMedGoogle Scholar
  433. Solter, D., and Knowles, B. B., 1978, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc. Natl. Acad. Sci. USA 75: 5565–5569.PubMedCrossRefGoogle Scholar
  434. Springer, G. F., 1970, Importance of blood-group substances in interactions between man and microbes, Ann. N.Y. Acad. Sci. 169: 134–152.PubMedCrossRefGoogle Scholar
  435. Springer, G. F., Desai, P. R., Yang, H. J., Schachter, H., and Narasimhan, S., 1976, Interrelations of blood group M and precursor specificities and their significance in human carcinoma, in: Human Blood Groups ( J. F. Mohn, R. W., Plunkett, R. K. Cunningham, and R. M. Lambert, eds.), pp. 179–187, Karger, Basel.Google Scholar
  436. Springer, G. F., Desai, P. R., and Murthy, M. S., 1978, Human carcinoma-associated precursors of the blood group MN antigens, in: Glycoproteins and Glycolipids in Disease Processes ( E. F. Walborg, Jr., ed.), pp. 311–325, American Chemical Society, Washington, D. C.CrossRefGoogle Scholar
  437. Springer, W. R., Haywood, P. L., and Barondes, S. H., 1980, Endogenous cell surface lectin in Dictyostelium: Quantitation, elution by sugar, and elicitation by divalent immunoglobulin, J. Cell Biol. 87: 682–690.PubMedCrossRefGoogle Scholar
  438. Springer, G. F., Yang, H. J., Mbawa, E., and Grohlich, D., 1980, Highly active aminoterminal sialoglycopenta-, hexa-and heptapeptides from human erythrolyte NM antigens, Naturwissenchaften 67: 473–474.CrossRefGoogle Scholar
  439. Springer, G. F., Murthy, M. S., Fry, W. A., Tegmeyer, H., and Svanlon, E. F., 1982, Patient’s immune response to breast and lung carcinoma-associated Thomsen—Friedenreich (T) specificity, Klin. Wochenschr. 60: 121–131.PubMedCrossRefGoogle Scholar
  440. Staerk, J., Ronneberger, H. J., Wiegandt, H., and Ziegler, W., 1974, Interaction of gan- glioside GGtet and its derivatives with choleragen, Eur. J. Biochem. 48: 103–110.PubMedCrossRefGoogle Scholar
  441. Stahl, P., and Gordon, S., 1982, Expression of a mannosyl-fucosyl receptor for endocytosis on cultured primary macrophages and their hybrids, J. Cell Biol. 93: 49–56.PubMedCrossRefGoogle Scholar
  442. Stahl, P., Six, H., Rodman, J. S., Schlesinger, P., Tulsiani, D. R. P., and Touster, O., 1976a, Evidence for specific recognition sites mediating clearance of lysosomal enzymes in vivo, Proc. Natl. Acad. Sci. USA 73: 4045–4049.CrossRefGoogle Scholar
  443. Stahl, P., Rodman, J. S., and Schlesinger, P., 1976b, Clearance of lysosomal hydrolases following intravenous infusion, Arch. Biochem. Biophys. 117: 594–605.CrossRefGoogle Scholar
  444. Stahl, P. D., Rodman, J. S., Miller, M. J., and Schlesinger, P. H., 1978, Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages, Proc. Natl. Acad. Sci. USA 75: 1399–1403.PubMedCrossRefGoogle Scholar
  445. Stein, K. E., Schwarting, G. A., and Marcus, D. M., 1978, Glycolipid markers of murine lymphocyte subpopulations, J. Immunol. 120: 676–679.PubMedGoogle Scholar
  446. Stein-Douglas, K. E., Schwarting, G. A., Naiki, M., and Marcus, D. M., 1976, Gangliosides as markers for murine lymphocyte subpopulations, J. Exp. Med. 143: 822–832.PubMedCrossRefGoogle Scholar
  447. Steiner, S., Gacto, M., and Steiner, M. R., 1975, Fucolipids in normal and transformed cells, in: Cellular Membranes and Tumor Cell Behavior, pp. 309–324, 28th Annu. Symp. Fundamental Cancer Research, Williams & Wilkins, Baltimore.Google Scholar
  448. Steinitz, M., Seppala, I., Eichmann, K., and Klein, G., 1979, Establishment of a human lymphoblastoid cell line with specific antibody production against group A streptococcal carbohydrate, Immunobiology 156: 41–47.PubMedGoogle Scholar
  449. Stern, P. L., Martin, G. R., and Evans, M. J., 1975, Cell surface antigens of clonal teratocarcinoma cells at various stages of differentiation, Cell 6: 455–465.CrossRefGoogle Scholar
  450. Stern, P. L., Willison, K. R., Lennox, E., Galfre, G., Milstein, C., Secher, D., Ziegler, A., and Spencer, T., 1978, Monoclonal antibodies as probes for differentiation and tumor-associated antigens: A Forssman specificity on teratocarcinoma stem cells, Cell 14: 775–783.PubMedCrossRefGoogle Scholar
  451. Stoolman, L. M., and Rosen, S. D., 1983, Possible role for cell surface carbohydrate-binding molecules in lymphocyte recirculation, J. Cell Biol. 96: 722–729.PubMedCrossRefGoogle Scholar
  452. Strombeck, D. R., and Harrold, D., 1974, Binding of cholera toxin to mucins and inhibition by gastric mucin, Infect. Immun. 10: 1266–1272.PubMedGoogle Scholar
  453. Stutman, O., Dien, P., Wisun, R. E., and Lattime, E. C., 1980, Natural cytotoxic cells against solid tumors in mice: Blocking of cytotoxicity by D-mannose, Proc. Natl. Acad. Sci. USA 77: 2895–2898.PubMedCrossRefGoogle Scholar
  454. Suttajit, M., and Winzler, R. J., 1971, Effect of modification of N-acetylneuraminic acid on the binding of glycoproteins to influenza virus and on susceptibility to cleavage by neuraminidase, J. Biol. Chem. 246: 3398–3404.PubMedGoogle Scholar
  455. Sweeley, C. C., Fung, Y.-K., Macher, B. A., Moskal, J. R., and Nunez, H. A., 1978, Structure and metabolism of glycolipids, in: Glycoproteins and Glycolipids in Disease Processes ( E. F. Walborg, Jr., ed.), pp. 47–85, American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  456. Szulman, A. E., 1977, The ABH and Lewis antigens of human tissues during prenatal and postnatal life, in: Human Blood Groups ( J. F. Mohn, R. W. Plunkett, R. K., Cunningham, and R. M. Lambert, eds.), pp. 426–436, Karger, Basel.Google Scholar
  457. Tada, T., Tanguchi, M., and David, C. S., 1976, Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. IV. Special subregion assignment of the gene(s) that codes for the suppressive T-cell factor in the H-2 histocompatibility complex, J. Exp. Med. 144: 713–725.PubMedCrossRefGoogle Scholar
  458. Targan, S., Decker, J., and Ades, E. W., 1984, Mechanism of inhibition of natural killing by a glycopeptide isolated from the K562 plasma membrane, (submitted).Google Scholar
  459. Tate, R. L., Holmes, J. A., and Kohn, L. D., 1975, Characteristics of solubilized thyrotropin receptor from bovine thyroid plasma membranes, J. Biol. Chem. 250: 6527–6533.PubMedGoogle Scholar
  460. Taussig, M. J., Mozes, E., and Isaac, R., 1974, Antigen-specific thymus cell factors in the genetic control of the immune response to poly-(tyrosyl,glutamyl)-poly-D,L-alanyl—polylysyl, J. Exp. Med. 140: 310–312.CrossRefGoogle Scholar
  461. Taussig, M. J., Munro, A. J., Campbell, R., David, C. S., and Staines, N. A., 1975, Antigen-specific T-cell factor in cell cooperation. Mapping within the I region of the H-2 complex and ability to cooperate across allogeneic barriers, J. Exp. Med. 142: 694–700.PubMedCrossRefGoogle Scholar
  462. Teichberg, V. I., Silman, I., Beitsch, D. D., and Resheff, G., 1975, A ß-D-galactoside binding protein from electric organ tissue of Electrophorus electricus, Proc. Natl. Acad. Sci. USA 72: 1383–1387.CrossRefGoogle Scholar
  463. Teodorescu, M., Mayer, E. P., and Dray, S., 1977, Identification of five human lymphocyte subpopulations by their differential binding of various strains of bacteria, Cell. Immunol. 29: 353–362.PubMedCrossRefGoogle Scholar
  464. Thomas, D. B., 1971, Cyclic expression of blood group determinants in murine cells and their relationship to growth control, Nature (London) 233: 317–321.CrossRefGoogle Scholar
  465. Thomas, L., 1969, Relationships between mycoplasmas and mammalian cells, in: Cellular Recognition ( R. T. Smith and R. A. Good, eds.), pp. 139–144, Appleton—CenturyCrofts, New York.Google Scholar
  466. Thornburg, R. W., Day, J. F., Baynes, J. W., and Thorpe, S. R., 1980, Carbohydrate-mediated clearance of immune complexes from the circulation, J. Biol. Chem. 255: 6820–6825.PubMedGoogle Scholar
  467. Tomaska, L. D., and Parish, C. R., 1981, Inhibition of secondary IgG responses by Nacetyl-D-galactosamine, Eur. J. Immunol. 11: 181–186.PubMedCrossRefGoogle Scholar
  468. Tomaska, L. D., and Parish, C. R., 1982, Inhibition of secondary IgG responses by monosaccharides: Evidence for I-region control, J. Immunogenet. 9: 63–68.PubMedCrossRefGoogle Scholar
  469. Tonelli, Q., and Meints, R. H., 1978, Sialic acid: A specific role in hematopoietic spleen colony formation, J. Supramol. Struct. 8: 67–78.PubMedCrossRefGoogle Scholar
  470. Touraine, J. L., Touraine, F., Hadden, J. W., Hadden, E. M., and Good, R. A., 1976, 5Bromodeoxyuridine—light inactivation of human lymphocytes stimulated by mitogens and allogeneic cells: Evidence for distinct T-lymphocyte subsets, Immunology 52: 105–117.Google Scholar
  471. Townsend, R., and Stahl, P., 1981, Isolation and characterization of a mannose N-acetylglucosamine fucose-binding protein from rat liver, Biochem. J. 194: 209–214.PubMedGoogle Scholar
  472. Trenkner, E., and Sarkar, S., 1977, Microbial carbohydrate specific antibodies distinguish between different stages of differentiating mouse cerebellum, J. Supramol. Struct. 6: 465–472.PubMedCrossRefGoogle Scholar
  473. Tripp, M. R., 1974a, Oyster hemolymph proteins, Ann. N.Y. Acad. Sci. 234: 18–22.PubMedCrossRefGoogle Scholar
  474. Tripp, M. R., 1974b, Molluscan immunity, Ann. N.Y. Acad. Sci. 234: 23–27.PubMedCrossRefGoogle Scholar
  475. Trowbridge, I, S., and Hyman, R., 1975, Thy-1 variants of mouse lymphomas: Biochemical characterization of the genetic defect, Cell 6: 279–287.PubMedCrossRefGoogle Scholar
  476. Tsai, C.-M., Zopf, D. A., Wistar, R., Jr., and Ginsburg, V., 1976, A human cold agglutinin which binds lacto-N-neotetraose, J. Immunol. 117: 717–721.PubMedGoogle Scholar
  477. Tsai, C.-M., Zopf, D. A., Yu, R. K., Wistar, R., Jr., and Ginsburg, V., 1977, A Waldenstrom macroglobulin that is both a cold agglutinin and a cryoglobulin because it binds Nacetylneuraminosyl residues, Proc. Natl. Acad. Sci. USA 74: 4591–4594.PubMedCrossRefGoogle Scholar
  478. Turner, R. S., and Burger, M. M., 1973, Involvement of a carbohydrate group in the active site for surface guided reassociation of animal cells, Nature (London) 244: 509–510.CrossRefGoogle Scholar
  479. Uchida, T., and Nagai, Y., 1980, Affinity chromatographic purification of anti-glycolipid antibodies and their application to the membrane studies. J. Biochem. 87: 1829–1841.PubMedGoogle Scholar
  480. Uemura, K.-I., Yuzawa-Watanabe, M., Kitazawa, N., and Taketomi, T., 1980, Liposome agglutination and liposome membrane immune-damage assays for the characterization of antibodies to glycosphingolipids, J. Biochem. Tokyo 87: 1641–1648.PubMedGoogle Scholar
  481. Ullrich, K., Mersmann, G., Weber, E., and von Figura, K., 1978, Evidence for lysosomal enzyme recognition by human fibroblasts via a phosphorylated carbohydrate moiety, Biochem. J. 170: 643–650.PubMedGoogle Scholar
  482. van Dijk, W. C., Verbrugh, H. A., van der Tol, M. E., Peters, R., and Verhoef, J., 1979, Role of Escherichia coli K capsular antigens during complement activation, C3 fixation, and opsonization, Infect. Immun. 25: 603–609.PubMedGoogle Scholar
  483. van Heyningen, W. E., 1974, Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin, Nature (London) 249: 415–417.CrossRefGoogle Scholar
  484. van Heyningen, W. E., Carpenter, C. C. J., Pierce, N. F., and Greenough, W. B., III, 1971, Deactivation of cholera toxin by ganglioside, J. Infect. Dis. 124: 415–418.PubMedCrossRefGoogle Scholar
  485. Van Rood, J. J., Van Leeuwen, A., Koch, C. T., and Frederiks, E., 1970, HL-A inhibiting activity in serum, in: Histocompatibility Testing ( P. I. Terasaki, ed.), pp. 483–485, Williams & Wilkins, Baltimore.Google Scholar
  486. Varki, A., and Kornfeld, S., 1980, An autosomal dominant gene regulates the extent of 9-O-acetylation of murine erythrocyte sialic acids, J. Exp. Med. 152: 532–544.PubMedCrossRefGoogle Scholar
  487. Vengris, V. E., Reynolds, F. H., Jr., Hollenberg, M. D., and Pitha, P. M., 1976, Interferon action: Role of membrane gangliosides, Virology 72: 486–493.PubMedCrossRefGoogle Scholar
  488. Verbert, A., Cacan, R., and Montreuil, J., 1976, Ectogalactosyltransferase, Eur. J. Biochem. 70: 49–53.PubMedCrossRefGoogle Scholar
  489. Verbert, A., Cacan, R., Debeire, P., and Montreuil, J., 1977, Peculiar behavior of ectosialytransferase toward exogenous acceptors, FEBS Lett. 74: 234–238.PubMedCrossRefGoogle Scholar
  490. Vicari, G., and Kabat, E. A., 1969, Immunochemical studies on blood groups. XLII. Isolation and characterization from ovarian cyst fluid of a blood group substance lacking A, B, H, Lea and Lee specificity, J. Immunol. 102: 821–825.PubMedGoogle Scholar
  491. Vicari, G., Sher, A., Cohn, M., and Kabat, E. A., 1970, Immunochemical studies on a mouse myeloma protein with specificity for certain 13-linked terminal residues of Nacetyl-o-glucosamine, Immunochemistry 7: 829–838.PubMedCrossRefGoogle Scholar
  492. Visser, A., and Emmelot, P., 1973, Studies on plasma membranes. XX. Sialidase in hepatic membranes, J. Membr. Biol. 14: 73–84.PubMedCrossRefGoogle Scholar
  493. Vitetta, E. S., Artzt, K., Bennett, D., Boyse, E. A., and Jacob, F., 1975, Structural similarities between a product of the T/t-locus isolated from sperm and teratoma cells, and H-2 antigens isolated from splenocytes, Proc. Natl. Acad. Sci. USA 72: 3215–3219.PubMedCrossRefGoogle Scholar
  494. Voac, D., Sacks, S., Alderson, T., Takei, F., Lennox, E., Jarvis, J., Milstein, C., and Darnborough, J., 1980, Monoclonal anti-A from a hybrid-myeloma: Evaluation as a blood grouping reagent, Vox Sang. 39: 134–140.CrossRefGoogle Scholar
  495. von Figura, K., and Voss, B., 1979, Cell surface-associated lysosomal enzymes in cultured human skin fibroblasts, Exp. Cell Res. 121: 267–276.CrossRefGoogle Scholar
  496. Wagner, H., Hardt, C., Bartlett, R., Rollinghoff, M., and Pfizenmaier, K., 1980, Intrathymic differentiation of cytotoxic T lymphocyte (CTL) precursors. I. The CTL immunocompetence of peanut agglutinin-positive (cortical) and negative (medullary) Lyt 123 thymocytes, J. Immunol. 125: 2532–2538.PubMedGoogle Scholar
  497. Walborg, E. F., Jr., 1978, Current concepts of glycoprotein structure, in: Glycoproteins and Glycolipids in Disease Processes ( E. F. Walborg, Jr., ed.), pp. 5–20, American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  498. Wang, T. J., Freimuth, W. W., Miller, H. C., and Esselman, W. J., 1978, Thy-1 antigenicity is associated with glycolipids of brain and thymocytes, J. Immunol. 121: 1361–1365.PubMedGoogle Scholar
  499. Watanabe, K., and Hakomori, S.-I., 1976, Status of blood group carbohydrate chains in ontogenesis and in oncogenesis, J. Exp. Med. 144: 644–653.PubMedCrossRefGoogle Scholar
  500. Watkins, W. M., and Morgan, W. T. J., 1952, Neutralization of the anti-H agglutinin in eel serum by simple sugars, Nature (London) 169: 825–826.CrossRefGoogle Scholar
  501. Watkins, W. M., 1966, Blood-group specific substances, in: The Glycoproteins: Their Composition, Structure and Function ( A. Gottschalk, ed.), pp. 425–515, Elsevier, Amsterdam.Google Scholar
  502. Weigel, P. H., Schnaar, R. L., Kuhlenschmidt, M. S., Schmell, E., Lee, R. T., Lee, Y. C., and Roseman, S., 1979, Adhesion of hepatocytes to immobilized sugars: A threshold phenomenon, J. Biol. Chem. 254: 10830–10838.PubMedGoogle Scholar
  503. Weise, L., 1974, Nature of sex specific glycoprotein agglutinins in Chlamydomonas, Ann. N.Y. Acad. Sci. 234: 383–395.CrossRefGoogle Scholar
  504. Weitzen, M. L., Yamamoto, R. S., and Granger, G. A., 1983a, Identification of human lymphocyte-derived lymphotoxins with binding and cell lytic activity on NK sensitive cell lines in vitro, Cell. Immunol. 77: 30–41.PubMedCrossRefGoogle Scholar
  505. Weitzen, M. L., Inninis, E., Yamamoto, R. S., and Granger, G. A., 1983b, Inhibition of human NK induced cell-lysis and soluble cell-lytic molecules with anti-human LT antisera and various saccharides, Cell. Immunol. 77: 42–51.PubMedCrossRefGoogle Scholar
  506. Willison, K. R., and Stern, P. L., 1978, Expression of a Forssman Antigenic specificity in the preimplantation mouse embryo, Cell 14: 785–793.PubMedCrossRefGoogle Scholar
  507. Willison, K. R., Karol, R. A., Suzuki, A., Kundu, S. K., and Marcus, D. M., 1982, Neutral glycolipid antigens as developmental markers of mouse teratocarcinoma and early embryos: An immunologic and chemical analysis, J. Immunol. 129: 603–609.PubMedGoogle Scholar
  508. Winand, R. J., and Kohn, L. D., 1975, Thyrotropin effects on thyroid cells in culture, J. Biol. Chem. 250: 6534–6540.PubMedGoogle Scholar
  509. Winkelhake, J. L., and Kasper, D. L., 1972, Affinity chromatography of antimeningococcal antiserum, J. Immunol. 109: 824–833.PubMedGoogle Scholar
  510. Winkelhake, J. L., and Nicolson, G. L., 1976, Effects of exoglycosidase treatments on autochthonous antibody survival time in the circulation, J. Biol. Chem. 251: 1074–1080.PubMedGoogle Scholar
  511. Winkelstein, J. A., and Tomasz, A., 1977, Activation of the alternative pathway by pneumococcal cell walls, J. Immunol. 118: 451–454.PubMedGoogle Scholar
  512. Winkelstein, J. A., Bochini, J. A., Jr., and Schiffman, G., 1976, The role of the capsular polysaccharide in the activation of the alternative pathway by the pneumococcus, J. Immunol. 116: 367–370.PubMedGoogle Scholar
  513. Winkelstein, J. A., Abramovitz, A. S., and Tomasz, A., 1980, Activation of C3 via the alternative complement pathway results in fixation of C3b to the pneumococcal cell wall, J. Immunol. 124: 2502–2506.PubMedGoogle Scholar
  514. Wojdani, A., Stein, E. A., Lemmi, C. A., and Cooper, E. L., 1982, Agglutinins and proteins in the earthworm, Lumbricus terrestris, before and after injection of erythrocytes, carbohydrates, and other materials, Del,. Comp. Immunol. 6: 613–624.Google Scholar
  515. Wolff, J., Winand, R. J., and Kohn, L. D., 1974, The contribution of subunits of thyroid stimulating hormone to the binding and biological activity of thyrotropin, Proc. Natl. Acad. Sci. USA 71: 3460–3464.PubMedCrossRefGoogle Scholar
  516. Wolley, D. W., and Gommi, B. W., 1965, Serotonin receptors. VII. Activities of various pure gangliosides as the receptors, Proc. Natl. Acad. Sci. USA 53: 959–963.CrossRefGoogle Scholar
  517. Woodruff, J. J., and Woodruff, J. F., 1972, Virus-induced alterations of lymphoid tissues. III. Fate of radiolabeled thoracic duct lymphocytes in rats inoculated with Newcastle disease virus, Cell. Immunol. 5: 307–317.PubMedCrossRefGoogle Scholar
  518. Woodruff, J. J., Katz, I. M., Lucas, L. E., and Stamper, H. B., Jr., 1977, An in vitro model of lymphocyte homing. II. Membrane and cytoplasmic events involved in lymphocyte adherence to specialized high-endothelial venules of lymph nodes, J. Immunol. 119: 1603–1610.PubMedGoogle Scholar
  519. Wright, A., and Kanegasaki, S., 1971, Molecular aspects of lipopolysaccharides, Physiol. Rev. 51: 748–784.PubMedGoogle Scholar
  520. Yamaga, K. M., Kubo, R. T., and Etlinger, H. M., 1978, Studies on the question of conventional immunoglobulin on thymocytes from primitive vertebrates. I. Presence of anti-carbohydrate antibodies in rabbit anti-trout Ig sera, J. Immunol. 120: 2068–2073.PubMedGoogle Scholar
  521. Yamamoto, S., and Tokunaga, T., 1981, D-Mannose as a component of the macrophage surface receptor for macrophage-activating factor (MAF) in mice, Cell. Immunol. 61: 319–331.PubMedCrossRefGoogle Scholar
  522. Yeaton, R. W., 1981a, Invertebrate lectins. I. Occurrence, Dev. Comp. Immunol. 5: 391–402.PubMedGoogle Scholar
  523. Yeaton, R. W., 1981b, Invertebrate lectins. II. Diversity of specificity, biological synthesis and function in recognition, Dev. Comp. Immunol. 5: 535–545.PubMedGoogle Scholar
  524. Yeh, M. Y., Hellstrom, I., and Hellstrom, K. E., 1981, Clonal variation in expression of a human melanoma antigen defined by a monoclonal antibody, J. Immunol. 126: 1312–1317.PubMedGoogle Scholar
  525. Yen, P. H., and Ballou, C. E., 1974, Partial characterization of the sexual agglutination factor from Hansenula wengei Y-2340 type 5 cells, Biochemistry 13: 2428–2437.PubMedCrossRefGoogle Scholar
  526. Yogeeswaran, G., and Hakomori, S.-I., 1975, Cell contact-dependent ganglioside changes in mouse 3T3 fibroblasts and a suppressed sialidase activity on cell contact, Biochemistry 14: 2151–2156.PubMedCrossRefGoogle Scholar
  527. Yogeeswaran, G., Laine, R. A., and Hakomori, S.-I., 1974, Mechanism of cell contact-dependent glycolipid synthesis: Further studies with glycolipid glass complex, Biochem. Biophys. Res. Commun. 59: 591–599.PubMedCrossRefGoogle Scholar
  528. Young, W. W., Jr., and Hakomori, S.-I., 1978, Status of blood group carbohydrate chains in human tumors, in: Glycoproteins and Glycolipids in Disease Processes ( E. F. Walborg, Jr., ed.), pp. 357–371, American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  529. Young, W. W., Jr., Hakomori, S.-I., and Levine, P., 1979, Characterization of anti-Forssman (anti-Fs) antibodies in human sera: Their specificity and possible changes in patients with cancer, J. Immunol. 123: 92–96.PubMedGoogle Scholar
  530. Young, W. W., Jr., Hakomori, S.-I., Durdik, J. M., and Henney, C. S., 1980, Identification of ganglio-N-tetraosylceramide as a new cell surface marker for murine natural killer (NK) cells, J. Immunol. 124: 199–201.PubMedGoogle Scholar
  531. Young, W. W., Jr., Durdik, J. M., Urdal, D., Hakomori, S.-I., and Henney, C. S., 1981, Glycolipid expression in lymphoma cell variants: Chemical quantity, immunologic reactivity, and correlations with susceptibility to NK cells, J. Immunol. 126: 1–6.PubMedGoogle Scholar
  532. Yount, W. J., Dorner, M. M., Kunkel, H. G., and Kabat, E. A., 1968, Studies on human antibodies. VI. Selective variations in subgroup composition and genetic markers, J. Exp. Med. 127: 633–646.PubMedCrossRefGoogle Scholar
  533. Zopf, D. A., Ginsburg, A., and Ginsburg, V., 1975, Goat antibody directed against human Leb blood group hapten, lacto-N-difucohexaose I, J. Immunol. 115: 1525–1529.Google Scholar
  534. Zopf, D. A., Tsai, C.-M., and Ginsburg, V., 1978, Antibodies against oligosaccharides coupled to proteins: Characterization of carbohydrate specificity by radioimmune assay, Arch. Biochem. Biophys. 185: 61–71.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Christopher L. Reading
    • 1
  1. 1.The Department of Tumor Biology and the Bone Marrow Transplantation CenterThe University of Texas, M. D. Anderson Hospital and Tumor Institute at HoustonHoustonUSA

Personalised recommendations