Cell Surface Glycoproteins and Carbohydrate Antigens in Development and Differentiation of Human Erythroid Cells

  • Minoru Fukuda
  • Michiko N. Fukuda


In the past two decades, our knowledge of inheritance in biological systems has rapidly advanced. We now know that the information for the development of a mature organism is carried by the chemical structure of deoxyribonucleic acid, which, together with associated proteins, is present in nuclei. The next question is how the expression of this information is regulated in order to produce the appropriate highly organized structure. In this context, we have to face the fact that the processes of development and differentiation are highly complex yet miraculously ordered sequences of reactions. It is almost certain that the regulation of these events is the result not only of the expression of particular proteins but also of the interaction between these molecules in the same cell or in different cells. Thus, it is of critical importance to understand cell-cell interactions in order to understand the development and differentiation of a living organism. Our major assumption is that these cell-cell interactions are mostly governed by cell surface specificities and our major concern is to describe the cell surface specificities in molecular terms.


Sialic Acid K562 Cell Blood Group Human Erythrocyte Erythroid Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair, W. L., and Kornfeld, S., 1974, Isolation of the receptors for wheat germ agglutinin and the Ricinus communis lectins from human erythrocytes using affinity chromatography, J. Biol. Chem. 249: 4696.Google Scholar
  2. Allen, T. D., and Dexter, T. M., 1982, Ultrastructural aspect of erythropoietic differentiation in long-term bone marrow culture, Differentiation 21: 86.PubMedCrossRefGoogle Scholar
  3. Andersson, L. C., Jokinen, M., and Gahmberg, C. G., 1979a, Induction of erythroid differentiation in the human leukemic cell line K562, Nature (London) 278: 364.CrossRefGoogle Scholar
  4. Andersson, L. C., Nilsson, K., and Gahmberg, C. G., 1979b, K562—A human erythroleukemic cell line, Int. J. Cancer 23: 143.PubMedCrossRefGoogle Scholar
  5. Arrotti, J. J., and Garvin, J. E., 1972, Selective labeling of human erythrocyte components with tritiated trinitrobenzenesulfonic acid and picryl chloride, Biochem. Biophys. Res. Commun. 49: 205.PubMedCrossRefGoogle Scholar
  6. Bennet, V., and Stenbuck, P. J., 1980, Association between ankyrin and the cytoplasmic domain of Band 3 isolated from the human erythrocyte membrane, J. Biol. Chem. 255: 6424.Google Scholar
  7. Björndal, H., Hellerqvist, C. G., Lindberg, B., and Svensson, S., 1970, Gas—liquid chromatography and mass spectrometry in methylation analysis of polysaccharides, Angew. Chem. Int. Ed. Engl. 9: 610.CrossRefGoogle Scholar
  8. Blumenfeld, O. O., Gallop, P. M., and Liao, T. H., 1972, Modification and introduction of a specific radioactive label into the erythrocyte membrane sialoglycoproteins, Biochem. Biophys. Res. Commun. 48: 242.PubMedCrossRefGoogle Scholar
  9. Bonner, W. M., and Laskey, R. A., 1974, A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels, Eur. J. Biochem. 46: 83.PubMedCrossRefGoogle Scholar
  10. Bretscher, M. S., 1971, Human erythrocyte membranes: Specific labeling of surface proteins, J. Mol. Biol. 58: 775.PubMedCrossRefGoogle Scholar
  11. Brown, G., Biberfeld, P., Christensson, B., and Mason, D. Y., 1979, The distribution of HLA on human lymphoid, bone marrow and peripheral blood cells, Eur. J. Immunol. 9: 272.PubMedCrossRefGoogle Scholar
  12. Brown, J. P., Hewick, R. M., Hellstrom, I., Hellstrom, K. E., Doolittle, R. F., and Dreyer, W. J., 1982, Human melanoma-associated antigen p97 is structurally and functionally related to transferrin, Nature (London) 296: 171.CrossRefGoogle Scholar
  13. Cabantchik, Z. I., and Rothstein, A., 1972, The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives, J. Membr. Biol. 15: 207.Google Scholar
  14. Caligaris-Cappio, F., Gobbi, M., Bofill, M., and Janossy, G., 1982, Infrequent normal B lymphocytes express features of B-chronic lymphocytic leukemia, J. Exp. Med. 155: 623.PubMedCrossRefGoogle Scholar
  15. Chang, H., Langer, P. J., and Lodish, H. F., 1976, Asynchronous synthesis of erythrocyte membrane proteins, Proc. Natl. Acad. Sci. USA 73: 3206.PubMedCrossRefGoogle Scholar
  16. Childs, R. A., Feizi, T., Fukuda, M., and Hakomori, S., 1978, Blood group I activity associated with Band 3, the major intrinsic membrane protein of human erythrocytes, Biochem. J. 173: 333.PubMedGoogle Scholar
  17. Clarkson, B., Marks, P. A., and Till, J. E. (eds.), 1978, Differentiation of Normal and Neoplastic Hematopoietic Cells, Cold Spring Harbor Laboratory, New York.Google Scholar
  18. Dexter, T. M., 1982, Stromal cell associated hemopoiesis, J. Cell Physiol. Suppl. 1: 87.PubMedCrossRefGoogle Scholar
  19. Dexter, T. M., and Testa, N. G., 1980, In vitro methods in haemopoiesis and lymphopoiesis, J. Immunol. Methods 38: 177.PubMedCrossRefGoogle Scholar
  20. Dexter, T. M., Allen, T. P., and Lajtha, L. G., 1977, Conditions controlling the proliferation of haemopoietic stem cells in vitro, J. Cell Physiol. 91: 335.PubMedCrossRefGoogle Scholar
  21. Doinel, C., Andrew, G., Carton, J. P., Salmon C., and Fukuda, M. N., 1980, TK polyagglutination produced in vitro by endo- 3-galactosidase, Vox Sang. 38: 94.PubMedCrossRefGoogle Scholar
  22. Dokhelar, M.-C., Testa, U., Vainchenker, W., Finale, Y., Tetaud, C., Salem, P., and Tursz, T., 1982, NK cell sensitivity of the leukemic K562 cells: Effect of sodium butyrate and hemin induction, J. Immunol. 128: 211.PubMedGoogle Scholar
  23. Dozier, J. C., Diedrich, D. F., and Turco, S. J., 1981, The hexose transport system in the human K-562 chronic myelogenous leukemia-derived cell, J. Cell Physiol. 108: 77.PubMedCrossRefGoogle Scholar
  24. Drickamer, L. K., 1978, Orientation of the Band 3 polypeptide from human erythrocyte membranes: Identification of NH2-terminal sequence and site of carbohydrate attachment, J. Biol. Chem. 253: 7242.PubMedGoogle Scholar
  25. Ebert, W., Roelcke, D., and Weicker, H., 1975, The I antigen of human red cell membrane, Eur. J. Biochem. 53: 505.PubMedCrossRefGoogle Scholar
  26. Eisen, H., Bach, R., and Embery, R., 1977, Induction of spectrin in erythroleukemic cells transformed by Friend virus, Proc. Natl. Acad. Sci. USA 74: 3898.PubMedCrossRefGoogle Scholar
  27. Eylar, E. H., Madoff, M. A., Brody, U. V., and Oncley, J. L., 1962, The contribution of sialic acid to the surface charge of the erythrocyte, J. Biol. Chem. 237: 1992.Google Scholar
  28. Fauser, A. A., and Messner, H. A., 1979, Identification of megakaryocytes, macrophages and eosinophils in colonies of human bone marrow containing neutrophilic granulocytes and erythroblasts, Blood 53: 1023.PubMedGoogle Scholar
  29. Feizi, T., Kabat, E. A., Vicari, G., Anderson, B., and Marsh, W. L., 1971a, Immunochemical studies in blood groups, XLVII. The I antigen complex precursors in A, B, H, Lea and Lei’ blood group system, J. Exp. Med. 133: 39.PubMedCrossRefGoogle Scholar
  30. Feizi, T., Kabat, E. A., Vicari, G., Anderson, B., and Marsh, W. L., 1971b, Immunochemical studies in blood groups. XLIX. The I antigen complex: Specificity differences among anti-I sera revealed by quantitative precipitation studies; partial structure of the I determinant specific for one anti-I serum, J. Immunol. 106: 1578.PubMedGoogle Scholar
  31. Feizi, T., Childs, R. A., Watanabe, K., and Hakomori, S., 1979, Three types of blood group I specificity among monoclonal anti-I autoantibodies revealed by analogues of a branched erythrocyte glycolipid, J. Exp. Med. 149: 975.PubMedCrossRefGoogle Scholar
  32. Findlay, J. B. C., 1974, The receptor proteins for concanavalin A and Lens culinas phytohemagglutinin in the membrane of the human erythrocyte, J. Biol. Chem. 249: 4398.PubMedGoogle Scholar
  33. Finne, J., Krusius, T., Rauvala, H., Kekomaki, R., and Myllylä, G., 1978, Alkali-stable blood group A- and B-active poly(glycosyl) peptides from human erythrocyte membrane, FEBS Lett. 89: 111.PubMedCrossRefGoogle Scholar
  34. Finne, J., Krusius, T., and Järnefelt, J., 1980, Fractionation of glycopeptides, in: 27th International Congress of Pure and Applied Chemistry (A. Varmavouri, ed.), pp. 147–159, Pergamon Press, Elmsford, N.Y.Google Scholar
  35. Fitchen, J. H., Foon, K. A., and Cline, M. J., 1981, The antigenic characteristics of hematopoietic stem cells, N. Engl. J. Med. 305: 17.PubMedCrossRefGoogle Scholar
  36. Foon, K. A., Schroff, R. W., and Gale, R. P., 1982, Surface markers on leukemia and lymphoma cells: Recent advances, Blood 60: 1.PubMedGoogle Scholar
  37. Foxwell, B. M. J., and Tanner, M. J. A., 1981, Synthesis of the erythrocyte anion-transport protein: Immunochemical study of its incorporation into the plasma membrane of erythroid cells, Biochem. J. 195: 129.PubMedGoogle Scholar
  38. Friend, C., Scher, W., Holland, J. G., and Sato, T., 1971, Hemoblogin synthesis in virus-induced leukemic cells in vitro: Stimulation of erythroid differentiation by dimethyl sulfoxide, Proc. Natl. Acad. Sci. USA 68: 378.PubMedGoogle Scholar
  39. Fukuda, M., 1980, K562 human leukaemic cells express fetal type (i) antigen on different glycoproteins from circulating erythrocytes, Nature (London) 285: 405.CrossRefGoogle Scholar
  40. Fukuda, M., 1981, Tumor-promoting phorbol diester-induced specific changes in cell surface glycoprotein profile of K562 human leukemic cells, Cancer Res. 41: 4621.PubMedGoogle Scholar
  41. Fukuda, M., and Fukuda, M. N., 1981, Changes in cell surface glycoproteins and carbohydrate structures during the development and differentiation of human erythroid cells, J. Supramol. Struct. Cell. Biochem. 17: 313.PubMedCrossRefGoogle Scholar
  42. Fukuda, M., and Osawa, T., 1973, Isolation and characterization of a glycoprotein from human group O erythrocytes, J. Biol. Chem. 248: 5100.PubMedGoogle Scholar
  43. Fukuda, M., Kondo, T., and Osawa, T., 1976, Studies on the hydrazinolysis of glycoproteins, core structures of oligosaccharides obtained from porcine thyroglogulin and pineapple stem bromelain, J. Biochem. Tokyo 80: 1223.PubMedGoogle Scholar
  44. Fukuda, M., Eshdat, Y., Tarone, G., and Marchesi, V. T., 1978, Isolation and characterization of peptides derived from the cytoplasmic segment of Band 3, the predominant intrinsic membrane protein of the human erythrocyte, J. Biol. Chem. 253: 2419.PubMedGoogle Scholar
  45. Fukuda, M., Fukada, M. N., and Hakomori, S., 1979, Developmental change and genetic defect in the carbohydrate structure of Band 3 glycoprotein of human erythrocyte membrane, J. Biol. Chem. 254: 3700.PubMedGoogle Scholar
  46. Fukuda, M., Fukuda, M. N., Papayannopoulou, T., and Hakomori, S., 1980, Membrane differentiation in human erythroid cells: Unique profiles of cell surface glycoproteins expressed in erythroblasts in vitro from three ontogenic stages, Proc. Natl. Acad. Sci. USA 77: 3474.PubMedCrossRefGoogle Scholar
  47. Fukuda, M., Koeffler, H. P., and Minowada, J., 1981a, Membrane differentiation in human myeloid cells: Expression of unique profiles of cell surface glycoproteins in myeloid leukemic cell lines blocked at different stages of differentiation and maturation, Proc. Natl. Acad. Sci. USA 78: 6299.PubMedCrossRefGoogle Scholar
  48. Fukuda, M., Fukuda, M. N., Hakomori, S., and Papayannopoulou, T., 1981b, Anomalous cell surface structure of sickle cell anemia erythrocytes as demonstrated by cell surface labeling and endo-3-galactosidase treatment, J. Supramol. Struct. Cell. Biochem. 17: 289.PubMedCrossRefGoogle Scholar
  49. Fukuda, M., Dell, A., and Fukuda, M. N., 1984, Structure of fetal lactosaminoglycan, the carbohydrate moiety of Band 3 isolated from human umbilical cord erythrocytes, J. Biol. Chem.,(in press).Google Scholar
  50. Fukuda, M. N., 1981. Purification and characterization of endo-3-galactosidase from Escherichia freundii induced by hog gastric mucin, J. Biol. Chem. 256: 3900.PubMedGoogle Scholar
  51. Fukuda, M. N., 1982, Endo-3-galactosidases from Diplococcus pneumoniae, Fed. Proc. 41: 1160.Google Scholar
  52. Fukuda, M. N., and Levery, S. B., 1983, Glycolipids of fetal, newborn, and adult erythrocytes: glycolipid pattern and structural study of H,-glycolipid from newborn erythrocytes, Biochemistry 22: 5034.PubMedCrossRefGoogle Scholar
  53. Fukuda, M. N., and Matsumura, G., 1975, Endo-(3-galactosidase of Escherichia freundii: Hydrolysis of pig colonic mucin and milk oligosaccharides by endoglycosidic action, Biochem. Biophys. Res. Commun. 64: 465.PubMedCrossRefGoogle Scholar
  54. Fukuda, M. N., and Matsumura, G., 1976, Endo-3-galactosidase of Escherichia freundii: Purification and endoglycosidic action on keratan sulfates, oligosaccharides, and blood group active glycoprotein, J. Biol. Chem. 251: 6218.PubMedGoogle Scholar
  55. Fukuda, M. N., Fukuda, M., Watanabe, K., and Hakomori, S., 1978a, Modification of cell surface antigenicity by endo-3-galactosidase of E. freundii, Fed. Proc. 37: 1601.Google Scholar
  56. Fukuda, M. N., Watanabe, K., and Hakomori, S., 1978b, Release of oligosaccharides from various glycosphingolipids by endo-3-galactosidase, J. Biol. Chem. 253: 6814.PubMedGoogle Scholar
  57. Fukuda, M. N., Fukuda, M., and Hakomori, S., 1979, Cell surface modification by endo3-galactosidase, change of blood group activities and release of oligosaccharides from glycoproteins and glycosphingolipids of human erythrocytes, J. Biol. Chem. 254: 5458.PubMedGoogle Scholar
  58. Gahmberg, C. G., 1976, External labeling of human erythrocyte glycoproteins: Studies with galactose oxidase and fluorography, J. Biol. Chem. 251: 510.PubMedGoogle Scholar
  59. Gahmberg, C. G., and Andersson, L. C., 1977, Selective radioactive labeling of cell surface sialoglycoproteins by periodate—tritiated borohydride, J. Biol. Chem. 252: 5888.PubMedGoogle Scholar
  60. Gahmberg, C. G., and Hakomori, S., 1973, External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes, J. Biol. Chem. 248: 4311.PubMedGoogle Scholar
  61. Gahmberg, C. G., Myllylä, G., Leikola, J., Pirkola, A., and Nordling, S., 1976, Absence of the major sialoglycoprotein in the membrane of human En(a-) erythrocytes and increased glycosylation of Band 3, J. Biol. Chem. 251: 6108.PubMedGoogle Scholar
  62. Gahmberg, C. G., Jokinen, M., and Andersson, L. C., 1978, Expression of the major sialoglycoprotein (glycophorin) on erythroid cells in human bone marrow cells, Blood 52: 379.PubMedGoogle Scholar
  63. Gahmberg, C. G., Jokinen, M., and Andersson, L. C., 1979, Expression of the major red cell sialoglycoprotein, glycophorin A, in the human leukemia cell line K562, J. Biol. Chem. 254: 7442.PubMedGoogle Scholar
  64. Gartner, S., and Kaplan, H. S., 1980, Long-term culture of human bone marrow cells, Proc. Natl. Acad. Sci. USA 77: 4756.PubMedCrossRefGoogle Scholar
  65. Geiduschek, S. B., and Singer, J. J., 1979, Molecular changes in the membranes of mouse erythroid cells accompanying differentiation, Cell 16: 149.PubMedCrossRefGoogle Scholar
  66. Gesner, B. M., and Ginsburg, V., 1964, Effect of glycosidases on the fate of transfused lymphocytes, Proc. Natl. Acad. Sci. USA 52: 750.PubMedCrossRefGoogle Scholar
  67. Giblett, E. R., and Crookston, M. C., 1964, Agglutinability of red cells by anti-i in patients with thalassemia and other haematological disorders, Nature (London) 201: 1138.CrossRefGoogle Scholar
  68. Gilliland, D. G., Steplewski, Z., Collier, R. J., Mitchell, K. F., Chang, T. H., and Koprowski, H., 1980, Antibody-directed cytotoxic agents: Use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells, Proc. Natl. Acad. Sci. USA 77: 4539.PubMedCrossRefGoogle Scholar
  69. Gooi, H. C., Feizi, T., Kapadia, A., Knowles, B. B., Solter, D., and Evans, M. J., 1981, Stage-specific embryonic antigen involves a1–3 fucosylated type 2 blood group chains, Nature (London) 292: 156.CrossRefGoogle Scholar
  70. Gorga, F. R., Baldwin, S. A., and Lienhard, G. E., 1979, The monosaccharide transporter from human erythrocytes is heterogeneously glycosylated, Biochem. Biophys. Res. Commun. 91: 955.PubMedCrossRefGoogle Scholar
  71. Gregory, C. J., 1976, Erythropoietin sensitivity as a differentiation marker in the hemopoietic system, J. Cell Biol. 89: 289.Google Scholar
  72. Guerrasio, A., Vainchenker, W., Breton-Gorius, J., Testa, U., Rosa, R., Thomopoulos, P., Titeux, M., Guichard, J., and Beuzard, Y., 1981, Embryonic and fetal hemoglobin synthesis in K562 cell line, Blood Cells 7: 165.PubMedGoogle Scholar
  73. Hakomori, S., 1964, A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbonium in dimethyl sulfoxide, J. Biochem. Tokyo 55: 205.PubMedGoogle Scholar
  74. Hakomori, S., Fukuda, M., and Nudelman, E., 1982, Role of cell surface carbohydrates in differentiation: Behaviour of lactosaminoglycan in glycolipids and glycoproteins, in: Teratocarcinoma and Embryonic Cell Interactions ( T. Muramatsu, G. Gachelin, A. A., Moscona, and Y. Ikawa, eds.), pp. 179–200, Academic Press, New York.Google Scholar
  75. Hakomori, S., Fukuda, M., Sekiguchi, K., and Carter, W. G., 1984, Chemistry and function of pericellular and intercellular glycoproteins: Fibronectin, laminin and other matrix components, in: Connective Tissue Biochemistry (K. Piez and A. H. Reddi, eds.), Elsevier/North-Holland, Amsterdam (in press).Google Scholar
  76. Hamilton, T. A., Wada, H. G., and Sussman, H. H., 1979, Identification of transferrin receptors on the surface of human cultured cells, Proc. Natl. Acad. Sci. USA 76: 6406.PubMedCrossRefGoogle Scholar
  77. Harpaz, N., Flowers, H. M., and Sharon, N., 1977, a-Galactosidase from soybeans destroying blood-group B antigens: Purification by affinity chromatography and properties, Eur. J. Biochem. 77: 419.Google Scholar
  78. Harrison, F. L., and Chesterton, C. J., 1980, Erythroid developmental agglutinin is a protein lectin mediating specific cell–cell adhesion between differentiating rabbit erythroblasts, Nature (London) 286: 502.CrossRefGoogle Scholar
  79. Hillman, R. S., and Giblett, E. R., 1965, Red cell membrane alteration associated with `marrow stress,’ J. Clin. Invest. 44: 1730.PubMedCrossRefGoogle Scholar
  80. Hirano, S., and Meyer, K., 1971, Enzymatic degradation of corneal and cartilaginous keratan sulfates, Biochem. Biophys. Res. Commun. 44: 1371.PubMedCrossRefGoogle Scholar
  81. Horton, M. A., 1982, Analysis of marker enzymes in the K562 erythroleukaemia cell line: No coordinate expression of red cell enzymes in induction of haemoglobin synthesis, Biomedicine 36: 213.Google Scholar
  82. Horton, M. A., Cedar, S. H., and Edwards, P. A. W., 1981, Expression of red cell specific determinants during differentiation in the K562 erythroleukemia cell line, Scand. J. Haematol. 27: 231.PubMedCrossRefGoogle Scholar
  83. Hubbard, A. C., and Cohn, Z. A., 1972, The enzymatic iodination of the red cell membrane, J. Cell. Biol. 55: 390.PubMedCrossRefGoogle Scholar
  84. Hutchings, S. E., and Sato, G. H., 1978, Growth and maintenance of HeLa cells in serumfree medium supplemented with hormones, Proc. Natl. Acad. Sci. USA 75: 901.PubMedCrossRefGoogle Scholar
  85. Irimura, T., Tsuji, T., Tagami, S., Yamamoto, K., and Osawa, T., 1981, Structure of a complex-type sugar chain of human glycophorin A, Biochemistry 20: 560.PubMedCrossRefGoogle Scholar
  86. Janossy, G., Bollum, F., Bradstock, K., McMichael, A., Rapson, N., and Greaves, M. F., 1979, Terminal deoxynucleotidyl transferase positive cells in normal human bone marrow have the antigen phenotype of acute lymphoblastic leukemia cells, J. Immunol. 123: 1525.PubMedGoogle Scholar
  87. Järnefelt, J., Rush, J., Li, Y.-T., and Laine, R. A., 1978, Erythroglycan, a high molecular weight glycopeptide with the repeating structure [galactosyl(1–4)2-deoxy-2-acetamidoglucosyl(1–*3)] comprising more than one-third of the protein bound carbohydrate of human erythrocyte stroma, J. Biol. Chem. 253: 8006.PubMedGoogle Scholar
  88. Jenkins, W. J., Marsh, W. L., and Gold, E. R., 1965, Reciprocal relationship of antigens I and i in health and disease, Nature (London) 205: 813.CrossRefGoogle Scholar
  89. Kaizu, T., Turco, S. J., Rush, J. S., and Laine, R. A., 1982, Synthesis of the branched form of erythroglycan by Friend GM979 erythroleukemic cells, J. Biol. Chem. 257: 8272.PubMedGoogle Scholar
  90. Kannagi, R., Fukuda, M. N., and Hakomori, S., 1982, A new glycolipid antigen isolated from human erythrocyte membranes reacting with antibodies directed to globo-N-tetraosyl ceramide (globoside), J. Biol. Chem. 257: 4438.PubMedGoogle Scholar
  91. Karhi, K. K., Andersson, L. C., Vuopio, O., and Gahmberg, C. G., 1981, Expression of blood group A antigens in human bone marrow cells, Blood 57: 147.PubMedGoogle Scholar
  92. Karlsson, K.-A., Leffler, H., and Samuelson, B. E., 1974, Characterization of the Forssman glycolipid hapten of horse kidney by mass spectrometry, J. Biol. Chem. 249: 4819.PubMedGoogle Scholar
  93. Keating, A., Singer, J. W., Killen, P. D., Striker, G. E., Salo, A. C., Sanders, J., Thomas, E. P., Thorning, D., and Fialkow, P. J., 1982, Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man, Nature (London) 298: 280.CrossRefGoogle Scholar
  94. Kitamikado, M., and Ueno, R., 1970, Enzymatic degradation of whale cartilage keratosulfate. III. Purification of a bacterial keratosulfate-degrading enzyme, Bull. Jpn. Soc. Sci. Fish. 36: 1175.CrossRefGoogle Scholar
  95. Kitamikado, M., Ito, M., and Li, Y.-T., 1981, Isolation and characterization of a keratan sulfate-degrading endo-ß-galactosidase from Flavobacterium karatolyticus, J. Biol. Chem. 256: 3906.PubMedGoogle Scholar
  96. Klein, J., 1979, The major histocompatibility complex of the mouse, Science 203: 516.PubMedCrossRefGoogle Scholar
  97. Knauf, P. A., and Law, F.-Y., 1981, Comparison of anion exchange in K562 erythroleukemic cells and human red blood cells, J. Supramol. Struct. Cell Biochem. Supplement 5, p. 124, Alan R. Liss, New York.Google Scholar
  98. Koeffler, H. P., and Golde, D. W., 1981, Chronic myelogenous leukemia—New concepts, N. Engl. J. Med. 304: 1201, 1269.PubMedCrossRefGoogle Scholar
  99. Kornfeld, R., and Kornfeld, S., 1976, Comparative aspects of glycoprotein structure, Annu. Rev. Biochem. 45: 217.PubMedCrossRefGoogle Scholar
  100. Kornfeld, R., and Kornfeld, S., 1980, Structure of glycoproteins and their oligosaccharide units, in: The Biochemistry of Glycoproteins and Proteoglycans ( W. J. Lennarz, ed.), pp. 1–34, Plenum Press, New York.CrossRefGoogle Scholar
  101. Koschielak, J., Zdebska, E., Wilczynska, Z., Miller-Podraza, H., and Dzierzkowa-Borodej, W., 1979, Immunochemistry of Ii-active glycosphingolipids of erythrocytes, Eur. J. Biochem. 96: 331.CrossRefGoogle Scholar
  102. Koury, J. J., and Pragnell, I. B., 1982, Retroviruses induce granulocyte—macrophage colony stimulating activity in fibroblasts, Nature (London) 299: 638.CrossRefGoogle Scholar
  103. Krusius, T., Finne, J., and Rauvala, H., 1978, The poly(glycosyl) chains of glycoproteins: Characterization of a novel type of glycoprotein saccharides from human erythrocyte membrane, Eur. J. Biochem. 92: 289.PubMedCrossRefGoogle Scholar
  104. Laemmli, U. K., 1970, Cleavage of structural proteins during assembly of bacteriophage T4, Nature (London) 227: 680.CrossRefGoogle Scholar
  105. Li, E., Gibson, R., and Kornfeld, S., 1979, Structure of an unusual complex-type oligosaccharides isolated from Chinese hamster ovary cells, Arch. Biochem. Biophys. 199: 393.CrossRefGoogle Scholar
  106. Li. Y.-T., 1967, Studies on the glycosidases in jack bean meal. I. Isolation and properties of a-mannosidase, J. Biol. Chem. 242: 5474.PubMedGoogle Scholar
  107. Lichtman, M. A., 1981, The ultrastructure of the hemopoietic environment of the marrow: A review, Exp. Hematol. 9: 391.PubMedGoogle Scholar
  108. Lozzio, B. B., and Lozzio, C. B., 1980, Properties and usefulness of the original K-562 human myelogenous leukemia cell line, Leuk. Res. 3: 363.CrossRefGoogle Scholar
  109. Lozzio, C. B., and Lozzio, B. B., 1975, Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome, Blood 45: 321.PubMedGoogle Scholar
  110. McGinniss, M. H., Schmidt, P. J., and Carbone, P. P., 1964, Close association of I blood group and disease, Nature (London) 202: 606.CrossRefGoogle Scholar
  111. Marchesi, V. T., Furthmayr, H., and Tornita, M., 1976, The red cell membrane, Annu. Rev. Biochem. 45: 667.PubMedCrossRefGoogle Scholar
  112. Marcus, D. M., Kabat, E. A., and Rosenfeld, R. E., 1963, The action of enzymes from Clostridium teritium in the I-antigenic determinants of human erythrocytes, J. Exp. Med. 118: 175.PubMedCrossRefGoogle Scholar
  113. Marie, J. P., Izaguirre, C. A., Civin, C. I., Mirro, J., and McCulloch, E. A., 1981, The presence within single K562 cells of erythropoietic and granulopoietic differentiation markers, Blood 58: 708.PubMedGoogle Scholar
  114. Marsh, W. L., 1961, Anti-i: Cold antibody defining Ii relationship in human red cells, Br. J. Haematol. 7: 200.PubMedCrossRefGoogle Scholar
  115. Martin, K., 1970, The effect of proteolytic enzymes on acetylocholine-esterase activity, the sodium pump and choline transport in human erythrocytes, Biochim. Biophys. Acta 203: 182.PubMedCrossRefGoogle Scholar
  116. Metcalf, D., 1977, Hematopoietic Colonies: In Vitro Cloning of Normal and Leukemic Cells,Springer-Verlag, Berlin.Google Scholar
  117. Metcalf, D., and Moore, M. A. S., 1971, Hematopoietic Cells, North-Holland, Amsterdam.Google Scholar
  118. Metcalf, D., and Johnson, C. R., 1978, Mixed hematopoietic colonies in vitro, in: Hematopoietic Cell Differentiation, ICN-UCLA Symposia on Molecular and Cellular Biology 10, ( D. W. Golde, M. J. Cline, D. Metcalf, C. F. Fox, eds.), pp. 141–151, Academic Press, New York.Google Scholar
  119. Metcalf, D., Johnson, G. R., and Mandel, T. E., 1979, Colony formation in agar by multipotential hemopoietic cells, J. Cell Physiol. 98: 401.PubMedCrossRefGoogle Scholar
  120. Metzgar, R. S., Browitz, M. J., Jones, N. H., and Lowell, B. L., 1981, Distribution of common acute lymphoblastic leukemia antigen in nonhematopoietic tissues, J. Exp. Med. 154: 1249.PubMedCrossRefGoogle Scholar
  121. Montreuil, J., 1980, Primary structure of glycoprotein glycans: Basis for the molecular biology of glycoproteins, Adv. Carbohydr. Chem. Biochem. 37: 157.PubMedCrossRefGoogle Scholar
  122. Moore, M. A. S., and Metcalf, D., 1970, Ontogeny of the hematopoietic system: Yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo, Br. J. Haematol. 18: 279.PubMedCrossRefGoogle Scholar
  123. Moore, M. A. S., Broxmeyer, H. E., Sheridan, A. P. C., Meyers, P. A., Jacobson, N., and Winchester, R. J., 1980, Continuous human bone marrow cells: la antigen characterization of probable pluripotential stem cells, Blood 55: 682.PubMedGoogle Scholar
  124. Moore, S., Woodrow, C. H., and McClelland, D. B. L., 1982, Isolation of membrane components associated with human red cell antigens Rh(D), (C), (E) and Fya, Nature (London) 295: 529.CrossRefGoogle Scholar
  125. Morell, A. G., Van Den Hamer, C. J. A., Scheinberg, I. H., and Ashwell, G., 1966, Physical and chemical studies in ceruloplasmin. IV. Preparation of radioactive sialic acid-free ceruloplasmin labeled with tritium in terminal D-galactose residues, J. Biol. Chem. 241: 3745.PubMedGoogle Scholar
  126. Morrow, J. S., Speicher, P. W., Knowles, W. J., Hsu, C. J., and Marchesi, V. T., 1980, Identification of functional domains of human erythrocyte spectrin, Proc. Natl. Acad. Sci. USA 77: 6592.PubMedCrossRefGoogle Scholar
  127. Muramatsu, H., Muramatsu, T., and Avner, P., 1982, Biochemical properties of the highmolecular-weight glycopeptides released from the cell surface of human teratocarcinoma cells, Cancer Res. 42: 1749.PubMedGoogle Scholar
  128. Muramatsu, T., 1971, Demonstration of an endo-glycosidase acting on a glycoprotein, J. Biol. Chem. 246: 5535.PubMedGoogle Scholar
  129. Muramatsu, T., and Egami, F., 1967, ci-Mannosidase and ß-mannosidase from the liver of Turbo corrutus: Purification, properties and application of carbohydrate research, J. Biochem. Tokyo 62: 700.Google Scholar
  130. Muramatsu, T., Gachelin, G., Damonneville, M., Delarbre, C., and Jacob, F., 1979, Cell surface carbohydrates of embryonal carcinoma cells: Polysaccharidic side chains of F9 antigens and of receptors to two lectins, FBP and PNA, Cell 18: 183.PubMedCrossRefGoogle Scholar
  131. Nakahata, T., and Ogawa, M., 1982, Identification in culture of a class of hemopoietic colony forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies, Proc. Natl. Acad. Sci. USA 79: 3843.PubMedCrossRefGoogle Scholar
  132. Nakazawa, K., Suzuki, N., and Suzuki, S., 1975, Sequential degradation of keratan sulfate by bacterial enzymes and purification of a sulfatase in the enzymatic system, J. Biol. Chem. 250: 905.PubMedGoogle Scholar
  133. Nieman, H., Watanabe, K., Hakomori, S., Childs, R. A., and Feizi, T., 1978, Blood group i and I activities of “lacto-N-norhexaosylceramide” and its analogues: The structural requirement for i-specifities, Biochem. Biophys. Res. Commun. 81: 1286.CrossRefGoogle Scholar
  134. Nigg, E. A., Bron, C., Girardet, M., and Cherry, R. J., 1980, Band 3—glycophorin A association in erythrocyte membranes demonstrated by combining protein diffusion measurements with antibody-induced cross-linking, Biochemistry 19: 1887.PubMedCrossRefGoogle Scholar
  135. Ogata, S., Muramatsu, T., and Kobata, A., 1975, Fractionation of glycopeptides by affinity column chromatography on concanavalin A-sepharose, J. Biochem. Tokyo 78: 687.PubMedGoogle Scholar
  136. O’Hara, C. J., Shumak, K. H., and Price, G. B., 1978, The i antigen on human myeloid progenitors, Clin. Immunol. Immunopathol. 10: 420.PubMedCrossRefGoogle Scholar
  137. Omary, M. B., Trowbridge, G. S., and Minowada, J., 1980, Human cell-surface glycoprotein with unusual properties, Nature (London) 286: 888.CrossRefGoogle Scholar
  138. Papayannopoulou, T., Chen, P., Maniatis, A., and Stamatoyannopoulos, G., 1980, Simultaneous assessment of i-antigenic expression and fetal hemoglobin in single red cells by immunofluorescence, Blood 55: 221.PubMedGoogle Scholar
  139. Papayannopoulou, T., Halfpap, L., Chen, S. H., Fukuda, M., Hoffman, R., Dow, L., and Hill, S., 1981, Fetal red cell markers and their relationships in patients with hematologic malignancies, in: Hemoglobin in Development and Differentiation ( G. Stamatoyannopoulos and A. W. Nienhuis, eds.), pp. 443–456, Liss, New York.Google Scholar
  140. Phillips, D. R., and Morrison, M., 1970, The arrangement of proteins in the human erythrocyte membrane, Biochem. Biophys. Res. Commun. 40: 284.PubMedCrossRefGoogle Scholar
  141. Quesenberry, P., and Levitt, L., 1979, Hematopoietic stem cells, N. Engl. J. Med. 301: 755, 819, 868.CrossRefGoogle Scholar
  142. Race, R. R., and Sanger, R., 1975, Blood Groups in Man, Blackwell, Oxford.Google Scholar
  143. Raghavendra, R. A. M., Brown, A. K., Rieder, R. F., Clegg, J. G., and Marsh, W. L., 1978, Aplastic anemia with fetal-like erythropoiesis following androgen therapy, Blood 51: 711.Google Scholar
  144. Rasilo, M.-L., and Renkonen, O., 1982, Cell-associated glycosaminoglycans of human teratocarcinoma-derived cells of line PA1, Eur. J. Biochem. 123: 397.PubMedCrossRefGoogle Scholar
  145. Rearden, A., and Masouredis, S. P., 1977, Blood group D antigen content of nucleated red cell precursors, Blood 50: 981.PubMedGoogle Scholar
  146. Reinherz, E. L., and Schlossman, S. F., 1980, The differentiation and function of human T lymphocytes, Cell 19: 821.PubMedCrossRefGoogle Scholar
  147. Reinherz, E. L., Kung, P. C., Goldstein, G., Levey, R. H., and Schlossman, S. F., 1980, Discrete stages of human intrathymic differentiation: Analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage, Proc. Nati. Acad. Sci. USA 77: 1588.CrossRefGoogle Scholar
  148. Reinherz, E. L., Geha, R., Rappeport, J. M., Wilson, M., Penta, A. C., Hussey, R., Fitzgerald, K. A., Daley, J. F., Levine, H., Rosen, F. S., and Schlossman, S. F., 1982, Reconstitution after transplantation with T-lymphocyte-depleted HLA halotype-mismatched bone marrow for severe combined immunodeficiency, Proc. Nati. Acad. Sci. USA 79: 6047.CrossRefGoogle Scholar
  149. Robinson, J., Sieff, C., Delia, D., Edwards, P. A. W., and Greaves, M., 1981, Expression of cell-surface HLA-DR, HLA-ABC and glycophorin during erythroid differentiation, Nature (London) 289: 68.CrossRefGoogle Scholar
  150. Rochant, H., Dreyfus, B., Bouguerra, M., and Tonthat, H., 1972, Refractory anemias, preleukemic conditions and fetal erythropoiesis, Blood 39: 721.Google Scholar
  151. Romans, D. G., Tilley, C. A., and Dorrington, K. J., 1980, Monogamous bivalency of IgG antibodies. I., Deficiency of branched ABHI-active oligosaccharide chains on red cells of infants causes the weak antiglobulin reactions in hemolytic disease of the newborn due to ABO incompatibility, J. Immunol. 124: 2807.PubMedGoogle Scholar
  152. Rutherford, T. R., Clegg, J. B., and Weatherall, D. J., 1979, K562 human leukaemic cells synthesize embryonic haemoglobin in response to haemin, Nature (London) 280: 164.CrossRefGoogle Scholar
  153. Salter, D. W., Bladwin, S. A., Lienhard, G. E., and Weber, M. J., 1982, Proteins antigenically related to the human erythrocyte glucose transporter in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts, Proc. Nati. Acad. Sci. USA 79: 1540.CrossRefGoogle Scholar
  154. Sandford, P. A., and Conrad, H. E., 1966, The structure of the Aerobacter aerogenes A3(S1) polysaccharide. I. A reexamination using improved procedures for methylation analysis, Biochemistry 5: 1508.PubMedCrossRefGoogle Scholar
  155. Sieff, C., Bicknell, D., Caine, G., Robinson, J., Lam, G., and Greaves, M. F., 1982, Changes in cell surface antigen expression during hemopoietic differentiation, Blood 60: 703.PubMedGoogle Scholar
  156. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720.PubMedCrossRefGoogle Scholar
  157. Stammatoyannopoulos, G., Papayannopoulou, T., Brice, M., Kurachi, S., Nakamoto, B., Lim, G., and Farquhar, M., 1981, Cell biology of hemoglobin switching. I. The switch from fetal to adult hemoglobin formation during ontogeny, in: Hemoglobins in Development and Differentiation ( G. Stamatoyannopoulos and A. W. Nienhuis, eds.), pp. 287–305, Liss, New York.Google Scholar
  158. Steck, T. L., 1974, The organization of proteins in the human red blood cell membranes, J. Cell Biol. 62: 1.PubMedCrossRefGoogle Scholar
  159. Steck, T. L., and Dawson, G., 1974, Topographical distribution of complex carbohydrates in the erythrocyte membrane, J. Biol. Chem. 249: 2135.PubMedGoogle Scholar
  160. Steck, T. L., and Kant, J. A., 1974, Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes, Methods Enzymol. 31: 172.PubMedCrossRefGoogle Scholar
  161. Steck, T. L., Koziarz, J. J., Singh, M. K., Reddy, G., and Kohler, H., 1978, Preparation and analysis of seven major, topographically defined fragments of Band 3, the predominant transmembrane polypeptide of human erythrocyte membranes, Biochemistry 17: 1216.PubMedCrossRefGoogle Scholar
  162. Stellner, K., Saito, H., and Hakomori, S., 1973, Determination of aminosugar linkages in giycolipids by methylation: Amino sugar linkage of ceramide pentasaccharide of rabbit erythrocytes and of Forssman antigen, Arch. Biochem. Biophys. 155: 464.PubMedCrossRefGoogle Scholar
  163. Sutherland, R., Delia, D., Schneider, C., Newman, R., Kemshead, J., and Greaves, M., 1981, Ubiquitous, cell surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin, Proc. Nati. Acad. Sci. USA 78: 4515.CrossRefGoogle Scholar
  164. Sweely, C. C., and Dawson, G., 1969, Lipids of the erythrocyte, in: Red Cell Membrane Structure and Function ( G. A. Jamieson and T. J. Greenwalt, eds.), p. 172, Lippincott, Philadelphia.Google Scholar
  165. Takasaki, S., and Kobata, A., 1976, Purification and characterization of an endo-3-galactosidase produced by Diplococcus pneumoniae, J. Biol. Chem. 251: 3603.PubMedGoogle Scholar
  166. Tanner, M. J. A., and Boxer, D. H., 1972, Separation and some properties of the major proteins of the human erythrocyte membrane, Biochem. J. 129: 333.PubMedGoogle Scholar
  167. Tarentino, A. L., and Maley, F., 1974, Purification and properties of an endo-3-N-acetylglucosaminidase from Streptomyces griseus, J. Biol. Chem. 249: 811.PubMedGoogle Scholar
  168. Tarentino, A. L., and Maley, F., 1975, A comparison of the substrate specificities of endo13-N-acetyoglucosaminidases from Streptomyces griseus and Diplococcus pneumoniae, Biochem. Biophys. Res. Commun. 67: 455.PubMedCrossRefGoogle Scholar
  169. Tarone, G., Hamasaki, N., Fukuda, M., and Marchesi, V. T., 1979, Proteolytic degradation of human erythrocyte Band 3 by membrane-associated protease activity, J. Membr. Biol. 48: 1.PubMedCrossRefGoogle Scholar
  170. Testa, U., Henri, A., Bettaieb, A., Titeux, M., Vainchenker, W., Tontha, H., Docklear, M. C., and Rochant, H., 1982, Regulation of i-and I-antigen expression in the K562 cell line, Cancer Res. 42: 4694.PubMedGoogle Scholar
  171. Thomas, D. B., and Winzler, R. J., 1969, Structural studies on human erythrocyte glycoproteins: Alkali-labile oligosaccharides, J. Biol. Chem. 244: 5943.PubMedGoogle Scholar
  172. Till, J. E., and McCulloch, 1961, A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res. 14: 213.PubMedCrossRefGoogle Scholar
  173. Tonkonow, B. L., Hoffman, R., Burger, D., Elder, J. T., Mazur, E. M., Murnane, M. J., and Benz, E. J., Jr., 1982, Differing responses of globin and glycophorin gene expression to hemin in the human leukemia cell line K562, Blood 59: 738.PubMedGoogle Scholar
  174. Toogood, I. R. G., Dexter, T. M., Allen, T. D., Suda, T., and Lajtha, L. G., 1980, The development of a liquid culture system for the growth of human bone marrow, Leuk. Res. 4: 449.PubMedCrossRefGoogle Scholar
  175. Torok-Storb, B., and Martin, P., 1982, Modulation of in vitro BFU-E growth by normal Iapositive T cells is restricted by HLA-DR, Nature (London) 298: 473.CrossRefGoogle Scholar
  176. Torok-Storb, B., Martin, P., and Hansen, J., 1981, Regulation of in vitro erythropoiesis by normal T cells: Evidence for two T-cell subsets with opposing function, Blood 58: 171.PubMedGoogle Scholar
  177. Trowbridge, I. S., and Omary, M. B., 1981, Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin, Proc. Natl. Acad. Sci. USA 78: 3039.PubMedCrossRefGoogle Scholar
  178. Tsuji, T., Irimura, T., and Osawa, T., 1980, The carbohydrate moiety of Band-3 glycoprotein of human erythrocyte membranes, Biochem. J. 187: 677.PubMedGoogle Scholar
  179. Turco, S. J., Rush, J. S., and Laine, R. A., 1980, Presence of erythroglycan on human K562 chronic myelogeneous leukemia-derived cells, J. Biol. Chem. 255: 3266.PubMedGoogle Scholar
  180. Tyler, J. M., Reinhardt, B. N., and Branton, D., 1980, Association of erythrocyte membrane proteins: Binding of purified Bands 2.1 and 4.1 to spectrin, J. Biol. Chem. 255: 7034.PubMedGoogle Scholar
  181. Urdal, D. L., and Hakomori, S., 1980, Tumor-associated ganglio-N-triosylceramide, target for antibody-dependent avidin-mediated drug killing of tumor cells, J. Biol. Chem. 255: 10509.PubMedGoogle Scholar
  182. Vainchenker, W., Testa, U., Rochant, H., Titeux, M., Henri, A., Bouguet, J., and BretonGorius, J., 1981a, Cellular regulation of i and I antigen expressions in human erythroblasts grown in vitro, Stem Cells 1: 97.PubMedGoogle Scholar
  183. Vainchenker, W., Testa, U., Guichard, J., Titeux, M., and Breton-Gorius, J., 1981b, Heterogeneity in the cellular commitment of a human leukemic cell line: K562, Blood Cells 7: 357.PubMedGoogle Scholar
  184. Van Lenten, L., and Ashwell, G., 1971, Studies in the chemical and enzymatic modification of glycoproteins: A general method for the tritiation of sialic acid containing glycoproteins, J. Biol. Chem. 246: 1889.PubMedGoogle Scholar
  185. Victoria, E. J., Mahan, L. C., and Masouredis, S. P., 1981, Anti-rho (D) IgG binds to Band 3 glycoprotein of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 78: 2898.PubMedCrossRefGoogle Scholar
  186. Wada, H. G., Hass, P. E., and Sussman, H. H., 1979, Transferrin receptor in human placental brush border membranes: Studies in the binding of transferrin to placental membrane vesicles and the identification of a placental brush border glycoprotein with high affinity for transferrin, J. Biol. Chem. 256: 1 2629.Google Scholar
  187. Watanabe, K., and Hakomori, S., 1976, Status of blood group carbohydrate chains in ontogenesis and in oncogenesis, J. Exp. Med. 144: 664.CrossRefGoogle Scholar
  188. Watanabe, K., Laine, K. A., and Hakomori, S., 1975, On neutral fucoglycolipids having long, branched carbohydrate chains: H-Active and I-active glycosphingolipids of human erythrocyte membranes, Biochemistry 14: 2725.PubMedCrossRefGoogle Scholar
  189. Watanabe, K., Hakomori, S., Childs, R. A., and Feizi, T., 1979, Characterization of a blood group 1-active ganglioside: Structural requirements for I and I specificities, J. Biol. Chem. 254: 3221.PubMedGoogle Scholar
  190. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determination by dodecylsulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 244: 4406.PubMedGoogle Scholar
  191. Wiener, A. S., Unger, L. J., Cohen, L., and Feldman, J., 1956, Type-specific cold auto-antibodies as a cause of acquired hemolytic anemia and hemolytic transferrin reactions: Biological test with bovine red cells, Ann. Intern. Med. 44: 221.PubMedGoogle Scholar
  192. Yurchencho, P. D., and Furthmayr, H., 1980, Expression of red cell membrane proteins in erythroid precursor cells, J. Supramol. Struct. 13: 255.CrossRefGoogle Scholar
  193. Yoshima, H., Furthmayr, H., and Kobata, A., 1980, Structures of the asparagine-linked sugar chains of glycophorin, J. Biol. Chem. 255: 9713.PubMedGoogle Scholar
  194. Yoshima, H., Shiraishi, N., Matsumoto, A., Maeda, S., Sugiyama, T., and Kobata, A., 1982, The asparagine-linked sugar chains of plasma membrane glycoproteins of K562 human leukaemic cells: A comparative study with human erythrocytes, J. Biochem. Tokyo 91: 233.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Minoru Fukuda
    • 1
  • Michiko N. Fukuda
    • 1
  1. 1.Cancer Research CenterLa Jolla Cancer Research FoundationLa JollaUSA

Personalised recommendations