Role of Glycoproteins during Early Mammalian Embryogenesis

  • Raymond J. Ivatt


The focus of this chapter is to identify the cellular interactions that occur during early mammalian embryogenesis and to summarize the current understanding of the molecular events at the cell surface that are involved in regulating these interactions. This description is restricted to shortrange cellular interactions, for example, between neighboring cells, and between cells and their local environment, such as the early basement membranes, and does not address longer-range interactions such as the role of growth factors during early development.


Zona Pellucida Embryonal Carcinoma Endodermal Cell Embryonal Carcinoma Cell Mannose Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson, E. D., and Ayers, S. E., 1979, The localization and synthesis of some collagen types in developing mouse embryos, Cell 16: 953–965.PubMedGoogle Scholar
  2. Adamson, E. D., and Grover, A., 1983, The production and maintenance of a functioning epithelial layer from embryonal carcinoma cells, in: Teratocarcinoma Stem Cells ( L. Silver, G. Martin, and S. Strickland, eds.), pp. 69–82, Cold Spring Harbor Laboratory, New York.Google Scholar
  3. Adamson, E. D., Evans, M. J., and Magrane, G. G., 1977, Biochemical markers of the progress of differentiation in cloned teratocarcinoma cell lines, Eur. J. Biochem. 79: 607–615.PubMedGoogle Scholar
  4. Adamson, E. D., Gaunt, S. J., and Graham, C. F., 1979, The differentiation of teratocarcinoma stem cells is marked by the types of collagen which are synthesized, Cell 17: 469–476.PubMedGoogle Scholar
  5. Ajiro, K., Borun, T. W., and Solter, D., 1980, Quantitative changes in the expression of histone Hl and H2B subtypes and their relationship to the differentiation of mouse embryonal carcinoma cells, Dey. Biol. 86: 206–211.Google Scholar
  6. Alexander, S. S., Colonna, G., and Edelhoch, H., 1979, The structure and stability of human cold insoluble globulin, J. Biol. Chem. 254: 1501–1505.PubMedGoogle Scholar
  7. Ali, I. V., Mautner, V. M., Lanza, R. P., and Hynes, R. O., 1977, Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein, Cell 11: 115–26.PubMedGoogle Scholar
  8. Alitalo, K., Vaheri, A., Krieg, T., and Timpl, R., 1980, Biosynthesis of two subunits of type IV procollagen and of other basement-membrane proteins by a human tumor line, Eur. J. Biochem. 109: 247–258.PubMedGoogle Scholar
  9. Andrews, P. W., Knowles, B. B., Cossu, G., and Solter, D., 1982, Teratocarcinoma and mouse embryo cell surface antigens: Characterization of the molecule(s) carrying the SSEA-1 antigenic determinant, Teratocarcinoma and Embryonic Cell Interactions (T. Muramatsu, G. Gachelin, A. A., Moscoma, and Y. Ikawa, eds.), pp. 103–119, Japan Scientific Societies Press, Tokyo.Google Scholar
  10. Artzt, K., 1973, Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture, Proc. Natl. Acad. Sci. USA 70: 2988–2992.PubMedGoogle Scholar
  11. Artzt, K., and Bennett, D., 1975, Analogies between embryonic (T/t) antigens and adult major histocompatibility (H-2) antigens, Nature (London) 226: 545–547.Google Scholar
  12. Artzt, K., Dubois, P., Bennett, D., Condamine, H., Babinet, C., and Jacob, F., 1973, Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture, Proc. Natl. Acad. Sci. USA 70: 2988–2992.PubMedGoogle Scholar
  13. Atienza-Samols, S. B., Pine, P. R., and Sherman, M. I., 1980, Effects of tunicamycin upon glycoprotein biosynthesis and development of early mouse embryo, Dev. Biol. 79: 19–32.PubMedGoogle Scholar
  14. Austin, C. R., and Bishop, M. W. H., 1959, Differential fluorescence in living rat eggs treated with acridine orange, Exp. Cell Res. 17: 35–43.PubMedGoogle Scholar
  15. Azin, M., and Surani, H., 1979, Glycoprotein synthesis and inhibition of glycosylation by tunicamycin in preimplantation mouse embryos: Compaction and trophoblast adhesion, Cell 18: 217–227.Google Scholar
  16. Balakier, H., and Pedersen, R. A., 1982, Allocation of cells to inner cell mass and tro- phectoderm lineages in preimplantation mouse embryos, Dev. Biol. 90: 352–362.PubMedGoogle Scholar
  17. Baranska, W., Koldovsky, P., and Koprowski, H., 1970, Antigenic study of unfertilized mouse eggs-cross reactivity with SV-40 induced antigens, Proc. Natl. Acad. Sci. USA 67: 193–199.PubMedGoogle Scholar
  18. Bechtel, P. J., Beavo, J. A., and Krebs, E. G., 1977, Purification and characterization of catalytic subunit of skeletal muscle adenosine-3’-5’-monophosphate dependent protein kinase, J. Biol. Chem. 252: 2691–2697.PubMedGoogle Scholar
  19. Bedford, J. M., 1963, Changes in the electrophoretic properties of rabbit spermatozoa during passage through the epididymis, Nature (London) 200: 1178–1180.Google Scholar
  20. Bedford, J. M., 1965, Changes in the fine structure of the rabbit sperm head during passage through the epididymis, J. Anat. 99: 891–906.PubMedGoogle Scholar
  21. Bedford, J. M., 1966, Development of the fertilizing ability of spermatozoa in the epididymis of the rabbit, J. Exp. Zool. 163: 319–329.Google Scholar
  22. Bedford, J. M., and Cooper, G. W., 1978, Membrane fusion events in the fertilization of vertebrate eggs, in: Membrane Fusion ( G. Poste and G. L. Nicolson, eds.), pp. 65–125, Elsevier/North-Holland, Amsterdam.Google Scholar
  23. Bedford, J. M., Cooper, G. W., and Calvin, H. I., 1972, Post-meiotic changes in the nucleus and membranes of mammalian spermatozoa, in: The Genetics of the Spermatozoa ( R. A. Beatty and S. Gluecksohn-Waelsch, eds.), pp. 69–89, Bogtrykereit Forum, Copenhagen.Google Scholar
  24. Bender, B. L., Jaffe, R., Carlin, B., and Chung, A. E., 1981, Immunolocalization of entactin, a sulfated basement membrane component, in rodent tissues, and comparison with GP-2 (laminin), Am. J. Pathol. 103: 419–426.PubMedGoogle Scholar
  25. Bender, B. L., Carlin, B., Jaffe, R., Temple, T., and Chung, A. E., 1982, Production and distribution of entactin and GP-2 in M1526–B3 cells, Exp. Cell Res. 137: 415–425.PubMedGoogle Scholar
  26. Bennett, D., 1975, The T-locus in the mouse, Cell 6: 441–454.Google Scholar
  27. Bennett, D., 1978, Genetically programmed abnormalities of cell interactions, Birth Defects Orig. Artic. Ser. 14: 285–303.PubMedGoogle Scholar
  28. Bernstine, E. G., Hooper, M. L., Grandchamp, S., and Ephrussi, B., 1973, Alkaline phos- phatase activity in mouse teratoma, Proc. Natl. Acad. Sci. USA 70: 3899–3903.Google Scholar
  29. Beyer, T. A., Rearick, J. I., Paulson, J. C., Prieels, J. P., Sadler, J. E., and Hill, R. L., 1979, Biosynthesis of mammalian glycoproteins and glycosylation pathways in the synthesis of the nonreducing terminal sequences, J. Biol. Chem. 254: 12531–12541.PubMedGoogle Scholar
  30. Beyer, T. A., Sadler, J. E., Rearick, J. I., Paulson, J. C., and Hill, R. L., 1981, Glycosyltransferases and their use in assessing oligosaccharide structure and structure—function relationships, Adv. Enzymol. 52: 23–176.PubMedGoogle Scholar
  31. Bhushana Rao, K. S. P., and Masson, P. L., 1977, Study of the primary structures of the peptide core of bovine estrus cervical mucin, J. Biol. Chem. 252: 7788–7795.Google Scholar
  32. Birdwell, C. R., Gospodarowicz, D., and Nicolson, G. L., 1978, Identification, localization and role of fibronectin in cultured bovine endothelial cells, Proc. Natl. Acad. Sci. USA 75: 3273–3277.PubMedGoogle Scholar
  33. Blasco, L., 1977, Clinical approach to evaluation of sperm cervical mucus interactions, Fertil. Steril. 28: 1133–1145.PubMedGoogle Scholar
  34. Bleil, J. D., and Wassarman, P. M., 1980a, Mammalian sperm—egg interaction: Identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm, Cell 20: 873–882.PubMedGoogle Scholar
  35. Bleil, J. D., and Wassarman, P. M., 1980b, Structure and function of the zona pellucida: Identification and characterization of the proteins of the mouse oocyte’s zona pellucida, Dev. Biol. 76: 185–202.PubMedGoogle Scholar
  36. Bleil, J. D., and Wassarman, P. M., 1980c, Synthesis of zona pellucida proteins by denuded and follicle enclosed mouse oocytes during culture in vitro, Proc. Natl. Acad. Sci. USA 77: 1029–1033.PubMedGoogle Scholar
  37. Bleil, J. D., Beall, C. F., and Wassarman, P. M., 1981, Mammalian sperm—egg interaction: Fertilization of mouse eggs triggers modification of the zona pellucida glycoprotein, ZP2, Dev. Biol. 86: 189–197.PubMedGoogle Scholar
  38. Bonaldo, M. D. F., Cassaro-Strunz, C. M., and Machado Santelli, G., 1982, Sulfated glycosaminoglycans and collagen patterns in parietal yolk sac carcinoma (PYSC), Cell Differ. 11: 99–106.Google Scholar
  39. Braden, A. H. W., Austin, C. R., and David, H. A., 1954, The reaction of the zona pellucida to sperm penetration, Aust. J. Biol. Sci. 7: 391–409.PubMedGoogle Scholar
  40. Brinster, R. L., 1974, The effects of cells transferred into the mouse blastocyst on subsequent development, J. Exp. Med. 140: 1049–1056.PubMedGoogle Scholar
  41. Brown, C. R., and Hartree, E. F., 1978, Studies on ram acrosin: Activation or proacrosin accompanying the isolation of acrosin from spermatozoa and purification of the enzyme by affinity chromatography, Biochem. J. 175: 227–238.PubMedGoogle Scholar
  42. Brown, C. R., Andani, Z., and Hartree, E. F., 1975, Studies on ram acrosin: Isolation from spermatozoa, activation by cations and organic solvents, and influence of cations on its reaction with inhibitors, Biochem. J. 149: 133–146.PubMedGoogle Scholar
  43. Brulet, P., Babinet, C., Kemler, R., and Jacob, F., 1980, Monoclonal antibodies against trophectoderm-specific markers during mouse blastocyst formation, Proc. Natl. Acad. Sci. USA 77: 413–4117.Google Scholar
  44. Buc-Caron, M. H., Gachelin, G., Hofnung, M., and Jacob, F., 1974, Presence of a mouse embryonic antigen on human spermatozoa, Proc. Natl. Acad. Sci. USA 71: 1730–1734.PubMedGoogle Scholar
  45. Burke, J. M., Balian, G., Ross, R., and Bornstein, P., 1978, Synthesis of type I and III procollagen and collagen by monkey aortic smooth muscle cells in vitro, Biochemistry 16: 3243–3249.Google Scholar
  46. Cascio, S. M., and Wassarman, P. M., 1982, Program of early development in the mammal: Post-transcriptional control of a class of proteins synthesized by mouse oocytes and early embryos, Dev. Biol. 89: 397–408.PubMedGoogle Scholar
  47. Carlin, B., Jaffe, R., Bender, B., and Chung, A. E., 1981, Entactin, a novel basal lamina-associated sulfated glycoprotein, J. Biol. Chem. 256: 5209–5214.PubMedGoogle Scholar
  48. Carlson, D. M., 1968, Structure and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins, J. Biol. Chem. 243: 616–626.PubMedGoogle Scholar
  49. Chapman, A., and Kornfeld, R., 1979a, Structure of the high mannose oligosaccharides of a human IgM myeloma protein, J. Biol. Chem. 254: 816–823.PubMedGoogle Scholar
  50. Chapman, A., and Kornfeld, R., 1979b, Structure of the high mannose oligosaccharides of a human IgM myeloma protein, J. Biol. Chem. 254: 824–828.PubMedGoogle Scholar
  51. Chapman, A., Trowbridge, I. S., Hyman, R., and Kornfeld, S., 1979a, Structure of the lipid-linked oligosaccharides in class E Thy-1 mutant lymphomas, Cell 17: 509–515.PubMedGoogle Scholar
  52. Chapman, A., Li, E., and Kornfeld, S., 1979b, The biosynthesis of the Major lipid-linked oligosaccharide of Chinese hamster ovary cells occurs by the ordered addition of man-nose residues, J. Biol. Chem. 254: 10243–10249.Google Scholar
  53. Chapman, A., Fujimoto, K., and Kornfeld, S., 1980, The primary glycosylation defect in class E Thy-l-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-phosphate-mannose, J. Biol. Chem. 255: 4441–4446.PubMedGoogle Scholar
  54. Chen, L. B., Gallimore, P. H., and McDougall, J. K., 1976, Correlation between tumor induction and the large external transformation-sensitive protein on the cell surface, Proc. Natl. Acad. Sci. USA 73: 3570–3574.PubMedGoogle Scholar
  55. Chung, A. E., Estes, L. E., Shinozuka, H., Braginski, J., Lorz, C., and Chung, C. A., 1977a, Morphological and biochemical observations on cells derived from the in vitro differentiation of the embryonal carcinoma cell line PCC4-F, Cancer Res. 37: 2072–2081.PubMedGoogle Scholar
  56. Chung, A. E., Freeman, I. L., and Braginski, J. E., 1977b, A novel extracellular membrane elaborated by a mouse embryonal carcinoma-derived cell line, Biochem. Biophys. Res. Commun. 79: 859–868.PubMedGoogle Scholar
  57. Chung, A. E., Jaffe, R., Freeman, I. L., Vergnes, J. P., Braginski, J. E., and Carlin, B., 1979, Properties of a basement membrane-related glycoprotein synthesized in culture by a mouse embryonal carcinoma-derived cell line, Cell 16: 277–287.PubMedGoogle Scholar
  58. Clark, C. C., Tomichek, E. A., Koszalka, T. R., Minor, R. R., and Kefalides, N. A., 1975a, The embryonic rat parietal yolk sac: The role of the parietal endoderm in the biosynthesis of basement membrane collagen and glycoprotein in vitro, J. Biol. Chem. 250: 5259–5267.PubMedGoogle Scholar
  59. Clark, C. C., Minor, R., Koszalka, T. R., Brent, R. L., and Kefalides, N. A., 1975b, The embryonic rat parietal yolk sac: Changes in the morphology and composition of its basement membrane during development, Dev. Biol. 46: 243–261.PubMedGoogle Scholar
  60. Clement, A. C., 1962, Development of ilyanassa following removal of D macromere at successive cleavage stages, J. Exp. Zool. 149: 193–215.Google Scholar
  61. Copp, A. J., 1978, Interaction between the inner cell mass and trophectoderm of the mouse blastocyst. 1. Study of proliferation, J. Embryol. Exp. Morphol. 48: 109–125.PubMedGoogle Scholar
  62. Copp, A. J., 1979, Interaction between the inner cell mass and trophectoderm of the mouse blastocyst. 2. Fate of the polar trophectoderm, J. Embryol. Exp. Morphol. 51: 109–120.PubMedGoogle Scholar
  63. Cullen, B., Emigholz, K., and Monahan, J., 1980, The transient appearance of specific proteins in one-cell mouse embryos, Dev. Biol. 76: 215–221.PubMedGoogle Scholar
  64. Cummings, R. D., Trowbridge, I. S., and Kornfeld, S., 1982, A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDPGIcNAc:a-D-mannoside ß1,6N-acetylglucosaminyl transferase, J. Biol. Chem. 257: 13421–13427.PubMedGoogle Scholar
  65. Curtis, A. S. G., 1960, Cortical grafting in Xenopus laevis, J. Embryol. Exp. Morphol. 8: 167–173.Google Scholar
  66. Dacie, J. V., 1962, The Haemolytic Anemias, Congenital and Acquired, Part II. The Autoimmune Haemolytic Anemias, pp. 366–377, Churchill, London.Google Scholar
  67. Damsky, C. H., Knudsen, K. A., Dorio, R. J., and Buck, C. A., 1981, Manipulation of cell—cell and cell—substratum interactions in mouse mammary tumor epithelial cells using broad spectrum antisera, J. Cell Biol. 80: 173–184.Google Scholar
  68. Darmon, M., and Serrero, G., 1983, Isolation of two different fibroblastic cell types from the embryonal carcinoma cell line 1003, in: Teratocarcinoma Stem Cells ( L. Silver, G. Martin, and S. Strickland, eds.), pp. 109–120, Cold Spring Harbor Laboratory, New York.Google Scholar
  69. Davidson, E. H., 1976, Gene Activity in Early Development, Academic Press, New York.Google Scholar
  70. De Felici, M., and Siracusa, G., 1980, Changes in concanavalin A-mediated agglutinability of mouse oocytes during meiosis, Dev. Biol. 76: 428–434.PubMedGoogle Scholar
  71. Dewey, M. J., Gearhart, J. D., and Mintz, B., 1977, Cell surface antigens of totipotent mouse teratocarcinoma cells grown in vivo—Their relation to embryo, adult and tumor antigens, Dev. Biol. 55: 359–374.PubMedGoogle Scholar
  72. Dewey, M. J., Filler, R., and Mintz, B., 1978, Protein pattern of developmentally totipotent mouse teratocarcinoma cells and normal early embryo cells, Dev. Biol. 65: 171–182.PubMedGoogle Scholar
  73. Dickson, A. D., 1979, Disappearance of the decidua capsularis and Reicherts membrane in the mouse, J. Anat. 129: 571–577.PubMedGoogle Scholar
  74. Ducibella, T., 1977, Surface changes of the developing trophoblast cell, in: Development in Mammals, Vol. 1 ( M. H. Johnson, ed.), pp. 5–30, North-Holland, Amsterdam.Google Scholar
  75. Ducibella, T., 1980, Divalent antibodies to mouse embryonal carcinoma cells inhibit compaction in the mouse embryo, Dev. Biol. 79: 356–366.PubMedGoogle Scholar
  76. Ducibella, T., Albertini, D. F., Anderson, E., and Biggers, J. D., 1975, Preimplantation mammalian embryo: Characterization of intercellular functions and their appearances during development, Dev. Biol. 45: 231–250.PubMedGoogle Scholar
  77. Dziadek, M., 1978, Modulation of alphafetoprotein synthesis in the early postimplantation mouse embryo, J. Embryol. Exp. Morphol. 43: 135–146.Google Scholar
  78. Dziadek, M., 1979, Cell differentiation in isolated inner cell masses of mouse blastocysts in vitro: Onset of specific gene expression, J. Embryol. Exp. Morphol. 43: 367–379.Google Scholar
  79. Dziadek, M., and Adamson, E. D., 1978, Localization and synthesis of alphafetoprotein in postimplantation mouse embryos, J. Embryol. Exp. Morphol. 43: 289–313.PubMedGoogle Scholar
  80. Edwards, R. G., Ferguson, L. C., and Combs, R. R. A., 1964, Blood group antigens on human spermatozoa, J. Reprod. Fertil. 7: 153–161.PubMedGoogle Scholar
  81. Elbein, A. D., 1979, The role of lipid-linked saccharides in the biosynthesis of complex carbohydrates, Annu. Rev. Plant Physiol. 30: 239–272.Google Scholar
  82. Enders, A. C., Given, R. L., and Schlafke, S., 1978, Differentiation and migration of endoderm in the rat and mouse at implantation, Anat. Rec. 190: 65–78.PubMedGoogle Scholar
  83. Engel, J., Odermatt, E., Engel, A., Madri, J. A., Furthmayr, H., Rhode, H., and Timpl, R., 1981, Shapes, domain, organizations and flexibility of LM and FN, two multifunctional proteins of the extracellular matrix, J. Mol. Biol. 150: 97–120.PubMedGoogle Scholar
  84. Epstein, C. J., and Smith, S. A., 1973, Amino acid uptake and protein synthesis in preimplantation mouse embryos, Dev. Biol. 33: 171–185.PubMedGoogle Scholar
  85. Etchison, J. R., Summers, D. F., and Georgopoulos, G., 1981, Variations in the size and structure of radiolabeled glycopeptides from the glycoprotein of vesicular stomatitis virus grown in four mouse teratocarcinoma cell lines, J. Biol. Chem. 256: 3366–3369.PubMedGoogle Scholar
  86. Fawcett, D. W., and Phillips, D. H., 1969, Observations on the release of spermatozoa and on changes in the head during passage through the epididymis, J. Reprod. Fertil. 6 (Suppl.): 405–418.Google Scholar
  87. Feizi, T., 1981, The blood group Ii system: A carbohydrate antigen system defined by naturally monoclonal or oligoclonal autoantibodies of man, Immunol. Commun. 10: 127–156.PubMedGoogle Scholar
  88. Feizi, T., Kapadia, A., Gooi, H. C., and Evans, M. J., 1982, Human monoclonal auto-antibodies detect changes in expression and polarization of the Ii antigens during cell differentiation in early mouse embryos and teratocarcinomas, in: Teratocarcinoma and Embryonic Cell Interactions ( T. Muramatsu, G. Gachelin, A. A. Moscona, Y. Ikawa, eds.), pp. 201–215, Japan Scientific Societies Press, Tokyo.Google Scholar
  89. Finne, J., Krusius, T., Rauvala, H., and Myllyla, G., 1978, Alkali-stable blood group A-and B-active poly(glycosyl)peptides from human erythrocyte membrane, FEBS Lett. 89: 111–114.PubMedGoogle Scholar
  90. Fiser, P. S., and MacPherson, J. W., 1976, Development of embryonic structures from isolated mouse blastomeres, Can. J. Anim. Sci. 56: 33–36.Google Scholar
  91. Flechon, J. E., 1973, Modifications ultrastructurales et cytochimiques des spermatozoides de lapin au cours du transit epididymaire, INSERM Colloq. 26: 115–140.Google Scholar
  92. Foidart, J. M., Berman, J. J., Paglia, L., Rennard, S., Abe, S., Perantoni, A., and Martin, G. R., 1980, Synthesis of fibronectin, laminin, and several collagens by a liver derived epithelial cell line, Lab. Invest. 42: 525–532.PubMedGoogle Scholar
  93. Fox, N., Damjanov, I., Knowles, B. B., and Solter, D., 1982, Teratocarcinoma antigen is secreted by epididymal cells and couple to maturing sperm, Exp. Cell Res. 137: 485–488.PubMedGoogle Scholar
  94. Friedman, D., 1976, Role of cyclic nucleotides in cell growth and differentiation, Physiol. Rev. 56: 652–685.PubMedGoogle Scholar
  95. Fukuda, M. N., and Matsumura, G., 1976, Endo-3-galactosidase of E. freundii: Purification and endocytic action on keratan sulfates, oligosaccharides, and blood group active glycoprotein, J. Biol. Chem. 251: 218–6223.Google Scholar
  96. Fukuda, M., Fukuda, M. N., and Hakomori, S.-I., 1979a, Developmental change and genetic defect in the carbohydrate structure of Band 3 glycoprotein of human erythrocyte membrane, J. Biol. Chem. 254: 3700–3703.PubMedGoogle Scholar
  97. Fukuda, M. N., Papermaster, D. S., and Hargrave, P. A., 1979b, Rhodopsin carbohydrate: Structure of small oligosaccharides attached at two sites near the NH2 terminal, J. Biol. Chem. 254: 8201–8207.PubMedGoogle Scholar
  98. Gachelin, G., Buc-Caron, M. H., Lis, H., and Sharon, N., 1976, Saccharides on teratocarcinoma cell plasma membranes: Their investigation with radioactively labelled lectins, Biochim. Biophys. Acta 436: 825–832.PubMedGoogle Scholar
  99. Gachelin, G., Kemler, R., Kelley, F., and Jacob, F., 1977, A new cell surface antigen common to multipotential embryonal carcinoma cells, spermatozoa and mouse early embryos, Dev. Biol. 57: 199–209.PubMedGoogle Scholar
  100. Gachelin, G., Delarbre, C., Coulon-Morelenc, M. J., Keil-Dlouha, V., and Muramatsu, T., 1982, F9 antigens: A reevaluation, in: Teratocarcinoma and Embryonic Cell Interactions ( T. Muramatsu, G. Gachelin, A. A. Moscona, and Y. Ikawa, eds.), pp. 121–140, Japan Scientific Societies Press, Tokyo.Google Scholar
  101. Gardner, R. L., 1975, in: The Developmental Biology of Reproduction (C. J. Markert, ed.), pp. 207–238, Academic Press, New York.Google Scholar
  102. Gardner, R. L., and Papaioannou, V. E., 1975, Differentiation in the trophectoderm and inner cell mass, in: The Early Development of Mammals ( M. Balls and A. E. Wild, eds.), pp. 107–132, Cambridge University Press, London.Google Scholar
  103. Gardner, R. L., and Rossant, J., 1976, Determination during embryogenesis, in: Embryogenesis in Mammals ( K. Elliott and M. O’Connor, eds.), pp. 5–25, Associated Scientific Publishers, Amsterdam.Google Scholar
  104. Gardner, R. L., Papaioannou, V. E., and Barton, S. C., 1973, Origin of the ectoplacental cone and secondary giant cells in mouse blastocysts reconstituted from isolated trophoblast and inner cell mass, J. Embryol. Exp. Morphol. 30: 561–572.PubMedGoogle Scholar
  105. Gelman, R. A., and Vered, J., 1976, Cyanogen bromide fragments of bovine cervical mucus glycoprotein, Biochim. Biophys. Acta 427: 627–633.PubMedGoogle Scholar
  106. Gleeson, P. A., and Schachter, H., 1983, Control of glycoprotein synthesis, J. Biol. Chem. 258: 6162–6173.PubMedGoogle Scholar
  107. Gmur, R., Knowles, B. B., and Solter, D., 1981, Regulation of phenotype in somatic cell lines with normal or tumor-derived mouse cells, Dev. Biol. 81: 245–254.PubMedGoogle Scholar
  108. Gooi, H. C., Feizi, T., Kapadia, A., Knowles, B. B., Solter, D., and Evans, M. J., 1981, Stage-specific embryonic antigen involves alpha-It3 fucosylated type 2 blood group chains, Nature (London) 292: 156–158.Google Scholar
  109. Grabel, L. B., Rosen, S. D., and Martin, G. R., 1979, Teratocarcinoma stem cells have a cell surface carbohydrate-binding component implicated in cell—cell adhesion, Cell 17: 477–484.PubMedGoogle Scholar
  110. Grabel, L. B., Glabe, C. G., Singer, M. S., Martin, G. R., and Rosen, S. D., 1981, A fucan specific lectin on teratocarcinoma stem cells, Biochem. Biophys. Res. Commun. 102: 1165–1171.PubMedGoogle Scholar
  111. Graham, C. F., 1977, Teratocarcinoma cells and normal mouse embryogenesis, in: Concepts in Mammalian Embryogenesis ( M. I. Sherman, ed.), pp. 315–376, MIT Press, Cambridge, Mass.Google Scholar
  112. Grinna, L. S., and Robbins, P. W., 1979, Glycoprotein biosynthesis: Rat liver microsomal glucosidases which process oligosaccharides, J. Biol. Chem. 254: 8814–8818.PubMedGoogle Scholar
  113. Grinna, L. S., and Robbins, P. W., 1980, Substrate specificities of rat liver microsomal glucosidases which process glycoproteins, J. Biol. Chem. 255: 2255–2258.PubMedGoogle Scholar
  114. Gulyas, B. J., 1980, Cortical granules of mammalian eggs, Int. Rev. Cytol. 63: 357–392.PubMedGoogle Scholar
  115. Gwatkin, R. B. L., 1976, Fertilization, in: The Cell Surface in Embryogenesis and Development ( G. Poste and G. L. Nicolson, eds.), pp. 1–54, North-Holland, Amsterdam.Google Scholar
  116. Gwatkin, R. B. L., 1977, Fertilization mechanisms in Man and Mammals, Plenum Press, New York.Google Scholar
  117. Gwatkin, R. B. L., and Anderson, O. F., 1973, Effect of glycosidase inhibitors on the capacitation of hamster spermatozoa by cumulus cells in vitro, J. Reprod. Fertil. 35: 565–567.PubMedGoogle Scholar
  118. Gwatkin, R. B. L., Williams, D. T., Hartman, J. F., and Kniazuk, M., 1973, The zona reaction of hamster and mouse eggs: Production in vitro of a trypsin like protease from cortical granules, J. Reprod. Fertil. 32: 259–265.PubMedGoogle Scholar
  119. Handyside, A. H., 1978, Time of commitment of inside cells isolated from preimplantation mouse embryos, J. Embryol. Exp. Morphol. 45: 37–53.PubMedGoogle Scholar
  120. Handyside, A. H., and Barton, S. C., 1977, Evaluation of the technique of immunosurgery for the isolation of inner cell masses from mouse blastocyst, J. Embryol. Exp. Morphol. 37: 217–226.PubMedGoogle Scholar
  121. Handyside, A. H., and Johnson, M. H., 1978, Temporal and spatial patterns of the synthesis of tissue-specific polypeptides in the preimplantation mouse embryo, J. Embryol. Exp. Morphol. 44: 191–199.PubMedGoogle Scholar
  122. Hanover, J. A., and Lennarz, W. J., 1978, The topological orientation of N,N’-diacetylchitobiosylpyrophosphoryldolichol in artificial and natural membranes, J. Biol. Chem. 254: 9237–9246.Google Scholar
  123. Harpaz, N., and Schachter, H., 1980a, Control of glycoprotein synthesis, J. Biol. Chem. 255: 4885–4893.PubMedGoogle Scholar
  124. Harpaz, N., and Schachter, H., 1980b, Control of glycoprotein synthesis, J. Biol. Chem. 255: 4894–4902.PubMedGoogle Scholar
  125. Hartmann, J. F., Gwatkin, R. B. L., and Hutchinson, C. F., 1972, Early contact interactions between mammalian gametes in vitro: Evidence that the vitellus influences adherence between sperm and zone pellucida, Proc. Natl. Acad. Sci. USA 69: 2767–2769.PubMedGoogle Scholar
  126. Hartree, E. F., 1977, Spermatozoa, eggs and proteinases, Biochem. Soc. Trans. 5: 375–394.PubMedGoogle Scholar
  127. Hassel, J. R., Newsome, D. A., and Hascall, V. C., 1979, Characterization and biosynthesis of proteoglycans of corneal stroma from rhesus monkey, J. Biol. Chem. 254: 12346–12354.Google Scholar
  128. Hatcher, V. B., Schwarzmann, G. O. H., Jeanloz, R. W., and McArthur, J. W., 1977, Purification, properties, and partial structure elucidation of a high molecular weight glycoprotein from cervical mucus of the bonnet monkey (Macaca radiata), Biochemistry 16: 1518–1524.PubMedGoogle Scholar
  129. Hayashi, M., Schlesinger, D. H., Kennedy, D. W., and Yamada, K. M., 1980, Isolation and characterization of a heparin-binding domain of cellular fibronectin, J. Biol. Chem. 255: 10017–10020.PubMedGoogle Scholar
  130. Heath, J., Bell, S., and Rees, A., 1981, Appearance of functional insulin receptors during the differentiation of embryonal carcinoma cells, J. Cell Biol. 91: 293–297.PubMedGoogle Scholar
  131. Heathcote, J. G., Sear, C. H. J., and Grant, M. E., 1978, Studies on the assembly of the lens capsule, biosynthesis and partial characterization of the collagenous components, Biochem. J. 176: 283–294.PubMedGoogle Scholar
  132. Hedman, K., Kurkinen, M., Alitalo, K., Vaheri, A., Johansson, S., and Höök, M., 1980, Isolation of the pericellular matrix of human fibroblast cultures, J. Cell Biol. 81: 83–91.Google Scholar
  133. Heifetz, A., Lennarz, W. J., Libbus, B., and Hsu, Y. C., 1980, Synthesis of glycoconjugates during the development of mouse embryos in vitro, Dev. Biol. 80: 398–408.Google Scholar
  134. Herbert, M. C., and Graham, C. F., 1974, Cell determination and biochemical differentiation of the early mammalian embryo, Curr. Top. Dev. Biol. 8: 151–178.PubMedGoogle Scholar
  135. Heyner, S., Brinster, R. L., and Palm, J., 1969, Effect of isoantibody on preimplantation mouse embryos, Nature (London) 222: 783–784.Google Scholar
  136. Hill, H. D., Reynolds, J. A., and Hill, R. L., 1977a, Purification, composition, molecular weight and subunit structure of ovine submaxillary mucin, J. Biol. Chem. 252: 3791–3798.PubMedGoogle Scholar
  137. Hill, H. D., Schwyzer, M., Steinman, H. M., and Hill, R. L., 1977b, Submaxillary mucin. 1. Structure and peptide substrates of UDP-N-acetylgalactosamine-mucin transferase, J. Biol. Chem. 252: 3799–3804.Google Scholar
  138. Hillman, N., Sherman, M. I., and Graham, C., 1972, Effect of spatial arrangement on cell determination during mouse development, J. Embryol. Exp. Morphol. 28: 263–278.PubMedGoogle Scholar
  139. Hogan, B. L. M., 1977, Teratocarcinoma cells as a model for mammalian development, in: Biochemistry of Cell Differentiation, Vol. 15 ( J. Paul, ed.), pp. 333–376, University Park Press, Baltimore.Google Scholar
  140. Hogan, B. L. M., 1980, High molecular weight extracellular proteins synthesized by endoderm cells derived from mouse teratocarcinoma cells and normal extraembryonic membranes, Dev. Biol. 76: 275–285.PubMedGoogle Scholar
  141. Hogan, B. L. M., and Tilly, R., 1978a, In vitro development of inner cell masses isolated immunosurgically from mouse blastocysts. I. Inner cell masses from 3.5 day p.c. blastocysts incubated for 24 h before immunosurgery, J. Embryol. Exp. Morphol. 45: 93–105.PubMedGoogle Scholar
  142. Hogan, B. L. M., and Tilly, R., 1978b, In vitro development of inner cell masses isolated immunosurgically from mouse blastocysts. II. Inner cell masses from 3.5 day to 4.0 day p.c. blastocysts, J. Embryol. Exp. Morphol. 45: 107–121.PubMedGoogle Scholar
  143. Hogan B., and Tilly, R., 1981, Cell interactions and endoderm differentiation in cultured mouse embryos, J. Embryol. Exp. Morphol. 62: 379–394.PubMedGoogle Scholar
  144. Hogan, B. L. M., Cooper, A. R., and Kurkinen, M., 1980, Incorporation into Reichert’s membrane of laminin-like extracellular proteins synthesized by parietal endoderm cells of the mouse embryo. Dev. Biol. 80: 289–300.PubMedGoogle Scholar
  145. Hogan, B. L. M., Taylor, A., and Adamson, E., 1981, Cell interactions modulate embryonal carcinoma cell differentiation into parietal or visceral endoderm, Nature (London) 291: 235–237.Google Scholar
  146. Hogan, B. L. M., Taylor, A., and Cooper, A., 1982a, Murine parietal endoderm cells synthesize heparan sulfate and 170K and 145K sulfated glycoproteins as components of Reichert’s membrane, Dev. Biol. 90: 210–214.PubMedGoogle Scholar
  147. Hogan, B. L. M., Taylor, A., Kurkinen, M., and Couchman, J. R., 1982b, Synthesis and localization of two sulfated glycoproteins associated with basement membranes and the extracellular matrix, J. Cell Biol. 95: 197–204.PubMedGoogle Scholar
  148. Horstadius, S., Josefson, L., and Runnstrom, J., 1967, Morphogenetic agents from unfertilized eggs of sea urchin Paracentrotus lividus, Dev. Biol. 16: 189–202.PubMedGoogle Scholar
  149. Howe, C. C., and Solter, D., 1979, Cytoplasmic and nuclear protein synthesis in preimplantation mouse embryos, J. Embryol. Exp. Morphol. 52: 209–225.PubMedGoogle Scholar
  150. Howe, C. C., and Solter, D., 1981, Changes in cell surface proteins during differentiation of mouse embryonal carcinoma cells, Dev. Biol. 84: 239–243.PubMedGoogle Scholar
  151. Howe, C. C., Gmur, R., and Solter, D., 1980, Cytoplasmic and nuclear protein synthesis during in vitro differentiation of murine ICM and embryonal carcinoma cells, Dev. Biol. 74: 351–363.PubMedGoogle Scholar
  152. Howe, W. E., and Oshima, R., 1982, Coordinate expression of parietal endodermal functions in hybrids of embryonal carcinoma and endodermal cells, Mol. Cell. Biol. 2: 331–337.PubMedGoogle Scholar
  153. Hsu, Y. C., 1972, Differentiation in vitro of mouse embryos beyond the implantation stage, Nature (London) 239: 200.Google Scholar
  154. Hubbard, S. C., and Ivan, R. J., 1981, Synthesis and processing of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 50: 555–583.PubMedGoogle Scholar
  155. Hubbard, S. C., and Robbins, P. W., 1979, Synthesis and processing of protein-linked oligosaccharides in vivo, J. Biol. Chem. 254: 4568–4576.PubMedGoogle Scholar
  156. Hubbard, S. C., and Robbins, P. W., 1980, Synthesis of the N-linked oligosaccharides of glycoproteins, J. Biol. Chem. 255: 11782–11793.PubMedGoogle Scholar
  157. Hunt, L. A., 1980, CHO cells selected for phytohemagglutinin and Con A resistance are deficient in both early and late stages of protein glycosylation, Cell 21: 407–415.PubMedGoogle Scholar
  158. Hyafil, F., Morello, D., Babinet, C., and Jacob, F., 1980, A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos, Cell 21: 927–934.PubMedGoogle Scholar
  159. Hyafil, F., Babinet, C., and Jacob, F., 1981, Cell—cell interaction in early embryogenesis: A molecular approach to the role of calcium, Cell 26: 447–454.PubMedGoogle Scholar
  160. Hynes, R. O., 1981, Fibronectin and its relation to cell structure and behavior, in: Cell Biology of the Extracellular Matrix ( E. D. Hays, eds.), Plenum Press, New York.Google Scholar
  161. Hynes, R. O., and Yamada, K. M., 1982, Fibronectins: Multifunctional modular glycoproteins, J. Cell Biol. 95: 369–377.PubMedGoogle Scholar
  162. Iacobelli, S., Garcea, N., and Angeloni, C., 1977, Biochemistry of cervical mucus: A comparative analysis of the secretion from preovulatory, postovulatory and pregnancy periods, Fertil. Steril. 22: 727–734.Google Scholar
  163. Illmensee, K., and Mahowald, A. P., 1974, Transplantation of posterior polar plasms in Drosophila: Induction of germ cells at anterior pole of egg, Proc. Natl. Acad. Sci. USA 71: 1016–1020.PubMedGoogle Scholar
  164. Illmensee, K., and Mintz, B., 1976, Totipotent and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts, Proc. Natl. Acad. Sci. USA 73: 549–553.PubMedGoogle Scholar
  165. lzquierdo, L., 1955, Arch. Biol. 66: 403–438.Google Scholar
  166. Izquierdo, L., Lopez, T., and Marticorena, P., 1980, Cell membrane regions in preimplantation mouse embryos, J. Embryol. Exp. Morphol. 59: 89–102.PubMedGoogle Scholar
  167. Jacob, F., 1977, Mouse teratocarcinoma and embryonic antigens, Immunol. Rev. 33: 3–32.PubMedGoogle Scholar
  168. Jacowski, S., and Dumont, J. N., 1979, Surface alterations of the mouse zona pellucida and ovum following in vivo fertilization: Correlation with the cell cycle, Biol. Reprod. 20: 150–161.Google Scholar
  169. Jaffe, L. F., 1968, Localization in the developing fucus egg and the general role of localizing currents, Adv. Morphol. 7: 295–328.Google Scholar
  170. Jaffe, E. A., and Mosher, D. F., 1978, Synthesis of fibronectin by cultured endothelial cells, J. Exp. Med. 147: 1779–1791.PubMedGoogle Scholar
  171. Järnefelt, J., Rush, J., Li, Y. T., and Laine, R. A., 1978, Erythroglycan, a high molecular weight glycopeptide with the repeating structure (galactosyl(1–4)2-deoxy-2-acetamidoglycosyl(1–3)) comprising more than one-third of the protein bound carbohydrate of the human erythrocyte stroma, J. Biol. Chem. 253: 8006–8009.PubMedGoogle Scholar
  172. Jensh, J. P., Koszalka, T. R., Jensen, M., Biddle, L., and Brent, R. L., 1977, Morphological alterations in the parietal yolk sac of the rat from the 12th to 19th day of gestation, J. Embryol. Exp. Morphol. 39: 9–21.PubMedGoogle Scholar
  173. Jetten, A. M., Jetten, M. E. R., and Sherman, M. I., 1979, Analyses of cell surface and secreted proteins of primary cultures of mouse extraembryonic membranes, Dev. Biol. 70: 89–104.PubMedGoogle Scholar
  174. Jetten, A. M., Deluca, L. M., and Meeks, R. G., 1982, Enhancement in apparent membrane microviscosity during differentiation of embryonal carcinoma cells induced by retinoids, Exp. Cell Res. 138: 494–498.PubMedGoogle Scholar
  175. Johnson, L. D., and Starcher, B. C., 1972, Epithelial basement membrane: The isolation and identification of a soluble component, Biochim. Biophys. Acta 290: 158–165.PubMedGoogle Scholar
  176. Johnson, L. V., and Calarco, P. G., 1980a, Electrophoretic analysis of cell surface proteins of preimplantation mouse embryos, Dev. Biol. 77: 224–227.PubMedGoogle Scholar
  177. Johnson, L. V., and Calarco, P. G., 1980b, Immunological characterization of embryonic cell surface antigens recognized by antiblastocysts serum, Dev. Biol. 79: 208–223.PubMedGoogle Scholar
  178. Johnson, L. V., and Calarco, P., 1980c, Stage-specific embryo antigens detected by an antiserum against mouse blastocysts, Dev. Biol. 79: 224–231.PubMedGoogle Scholar
  179. Johnson, M. H., 1982, Membrane events associated with the generation of a blastocyst, Int. Rev. Cytol. Suppl. 12: 1–37.Google Scholar
  180. Johnson, M. H., Handyside, A. H., and Braude, P. R., 1977, in: Development in Mammals (M. H., Johnson, ed.), Vol. 2, pp. 67–98, North-Holland, Amsterdam.Google Scholar
  181. Kahan, B. W., and Ephrussi, B., 1970, Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma, J. Natl. Cancer Inst. 44: 1015–1023.PubMedGoogle Scholar
  182. Kanwar, Y. S., and Farquhar, M. G., 1979, Isolation of GAGS (heparan sulfate) from glomerular basement membranes, Proc. Natl. Acad. Sci. USA 76: 4493–4497.PubMedGoogle Scholar
  183. Kapadia, A., Feizi, T., and Evans, M. J., 1981, Changes in the expression and polarization of blood group i and I antigens in postimplantation embryos and teratocarcinomas of mouse associated with cell differentiation, Exp. Cell Res. 131: 185–195.PubMedGoogle Scholar
  184. Kefalides, N. A., 1973, Structure and biosynthesis of basement membranes, Int. Rev. Con-nec. Tissue Res. 6: 63–104.Google Scholar
  185. Kefalides, N. A., 1975, Basement membranes:Current concepts of structure and synthesis, Dermatologica 150: 4–15.PubMedGoogle Scholar
  186. Kelly, J. J., 1977, Studies of the potency of early cleavage blastomeres of the mouse, in: The Early Development of Mammals ( M. Balls and A. E. Wild, eds.), pp. 97–106, Cambridge University Press, London.Google Scholar
  187. Kemler, R., Babinet, C., Condamine, H., Gachelin, G., Guernet, J. L., and Jacob, F., 1976, Embryonal carcinoma antigens and T/t locus of mouse, Proc. Natl. Acad. Sci. USA 73: 4080–4084.PubMedGoogle Scholar
  188. Kemler, R., Babinet, C., Eisen, H., and Jacob, F., 1977, Surface antigen in early differentiation, Proc. Natl. Acad. Sci. USA 74: 4449–4452.PubMedGoogle Scholar
  189. Kleinsmith, L. J., and Pierce, G. B., 1964, Multipotency of single embryonal carcinoma cells, Cancer Res. 24: 1544–1552.PubMedGoogle Scholar
  190. Knowles, B. B., Pan, S., Solter, D., Linnenbach, A., Croce, C., and Huebner, K., 1980, Expression of H-2, laminin, and SV-40T and TASA on differentiated and transformed murine teratocarcinoma cells, Nature (London) 288: 615–618.Google Scholar
  191. Knudsen, K. A., Rao, P. E., Damsky, C. H., and Buck, C. A., 1981, Membrane glycoproteins involved in cell—substratum adhesion, Proc. Natl. Acad. Sci. USA 78: 6071–6075.PubMedGoogle Scholar
  192. Kornfeld, R., and Kornfeld, S., 1980, Structure of glycoproteins and their oligosaccharide units, in: The Biochemistry of Glycoproteins and Proteoglycans ( W. J. Lennarz, ed.), pp. 1–34, Plenum Press, New York.Google Scholar
  193. Kornfeld, S., and Tabas, I., 1978, The synthesis of complex type oligosaccharides, J. Biol. Chem. 253: 7771–7778.PubMedGoogle Scholar
  194. Kornfeld, S., Gregory, W., and Chapman, A., 1979, The synthesis of complex type oligosaccharides, J. Biol. Chem. 254: 11649–11654.PubMedGoogle Scholar
  195. Krco, C. J., and Goldberg, E. H., 1976, H-Y (male) Ag-detection on 8-cell mouse embryos, Science 193: 1134–1135.PubMedGoogle Scholar
  196. Krebs, E. G., 1972, Protein kinases, Curr. Top. Cell. Regul. 5: 99–133.PubMedGoogle Scholar
  197. Kuff, E. L., and Fewell, J. W., 1980, Induction of neural-like cells and acetylcholinesterase activity in cultures of F9 teratocarcinoma treated with retinoic acid and dibutyryl cyclic adenosine monophosphate, Dev. Biol. 77: 103–115.PubMedGoogle Scholar
  198. Lee, W. I., Verdugo, P., Blandau, R. J., and Gaddum Rosse, P., 1977, Molecular arrangement of cervical mucus—Reevaluation based on laser light scattering spectroscopy, Gynecol. Invest. 8: 254–266.Google Scholar
  199. Leivo, I., Vaheri, A., Timpl, R., and Wartiovaara, J., 1980, Appearance and distribution of collagens and laminin in the early mouse embryo, Dev. Biol. 76: 100–114.PubMedGoogle Scholar
  200. Leivo, I., Alitalo, K., Ristell, L., Vaheri, A., Timpl, R., and Wartiovaara, J., 1982, Basal lamina glycoproteins laminin and type IV collagen are assembled into a fine-fibered matrix in cultures of a teratocarcinoma-derived endodermal cell line, Exp. Cell Res. 137: 15–23.PubMedGoogle Scholar
  201. Levinson, J., Goodfellow, P., Vadeboncoeur, M., and McDevitt, H., 1978, Identification of stage-specific polypeptides synthesized during murine preimplantation development, Proc. Natl. Acad. Sci. USA 75: 3332–3336.PubMedGoogle Scholar
  202. Li, E., Tabas, I., and Kornfeld, S., 1978, Structure of the lipid-linked precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein, J. Biol. Chem. 253: 7762–7770.PubMedGoogle Scholar
  203. Linder, S., Krondahl, U., Sennerstam, R., and Ringertz, N. R., 1981, Retinoic acid induced differentiation of F9 embryonal carcinoma cells, Exp. Cell Res. 132: 453–460.PubMedGoogle Scholar
  204. Liotta, L. A., and Hart, I. R., 1982, Tumor Invasion and Metastasis, Nijhoff, The Hague.Google Scholar
  205. Lloyd, K. O., and Kabat, E. A., 1968, Immunochemical studies on blood groups. XLI. Proposed structure for the carbohydrate portions of blood groups A, B, H, Lewis’ and Lewis“ substances, Proc. Natl. Acad. Sci. USA 61: 1470–1477.PubMedGoogle Scholar
  206. Lo, C. W., 1980, Gap junctions in development, in: Development in Mammals ( M. H. Johnson, ed.), Vol. 4, pp. 39–80, North-Holland, Amsterdam.Google Scholar
  207. Lo, C. W., and Gilula, N. B., 1980a, PCC4azal teratocarcinoma stem cell differentiation in culture, Dev. Biol. 75: 112–120.PubMedGoogle Scholar
  208. Lo, C. W., and Gilula, N. B., 1980b, PCC4azal teratocarcinoma stem cell differentiation in culture: Biochemical studies, Dev. Biol. 75: 78–92.PubMedGoogle Scholar
  209. Macarack, E. J., Kirby, E., Kirk, T., and Kefalides, N. A., 1978, Synthesis of cold insoluble globulin by cultured calf endothelial cells, Proc. Natl. Acad. Sci. USA 75: 2621–2625.Google Scholar
  210. McBurney, M. W., and Rogers, B. J., 1982, Isolation of male embryonal carcinoma cells and their chromosome replication patterns, Dev. Biol. 89: 503–508.PubMedGoogle Scholar
  211. McBurney, M. W., Jones Villeneuve, E. M. V., Edwards, M. K. S., and Anderson, P. J., 1982, Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line, Nature (London) 299: 165–167.Google Scholar
  212. McRorie, R. A., and Williams, W. L., 1974, Biochemistry of mammalian fertilization, Annu. Rev. Biochem. 43: 777–803.PubMedGoogle Scholar
  213. Madri, J. A., Roll, F. J., Furthmayr, H., and Foidart, J.-M., 1980, Ultrastructural localization of FN and LM in the basement membranes of the murine kidney, J. Cell Biol. 86: 682–687.PubMedGoogle Scholar
  214. Magnuson, T., and Epstein, C. J., 1981, Characterization of concanavalin A precipitated proteins from mouse embryos: A 2-dimensional gel electrophoresis study, Dev. Biol. 81: 193–199.PubMedGoogle Scholar
  215. Magnuson, T., and Stackpole, C. W., 1978, Lectin-mediated agglutination of preimplantation mouse embryos, Exp. Cell Res. 116: 466–469.Google Scholar
  216. Martin, G. R., 1975, Teratocarcinomas as a model system for the study of embryogenesis and neoplasia, Cell 5: 229–243.PubMedGoogle Scholar
  217. Martin, G. R., 1978, Advantages and limitations of teratocarcinoma stem cells as models of development, in: Development in Mammals ( M. Johnson, ed.), Vol. 3, pp. 225–265, Elsevier/North-Holland, Amsterdam.Google Scholar
  218. Martin, G. R., 1980, Teratocarcinomas and mammalian embryogenesis, Science 209: 768–776.PubMedGoogle Scholar
  219. Martin, G. R., and Evans, M. J., 1975, in: Teratomas and Differentiation (M. I. Sherman and D. Solter, eds.), pp. 167–187, Academic Press, New York.Google Scholar
  220. Martin, G. R., Wiley, L. M., and Damjanov, I., 1977, Development of cystic embryoid bodies in vitro from ceptic teratocarcinoma stem cells, Dev. Biol. 61: 230–244.PubMedGoogle Scholar
  221. Martin, G. R., Rosen, S. D., and Grabel, L. B., 1982, Specificity and possible role in intercellular adhesion of a teratocarcinoma stem cell surface lectin, in: Teratocarcinoma and Embryonic Cell Interactions ( T. Muramatsu, G. Gachelin, A. A. Moscona, and Y. Ikawa, eds.), pp. 295–309, Japan Scientific Societies Press, Tokyo.Google Scholar
  222. Martinez-Hernandez, A., Nakane, P. K., and Pierce, G. B., 1974, Intracellular localization of basement membrane antigen in parietal yolk sac cells, Am. J. Pathol. 76: 549–556.PubMedGoogle Scholar
  223. Mazanec, K., and Dvorak, M., 1963, Cesk. Morfol. 11: 103–108.PubMedGoogle Scholar
  224. Meyerhofer, M., Anderson, O. F., Marx, B. S., and Gwatkin, R. B. L., 1977, The zona reaction: An SEM and light microscope study employing hamster gametes, Scanning Electron Microsc. 2: 343–347.Google Scholar
  225. Midgley, A. R., and Pierce, G. B., 1963, Immunohistochemical analysis of basement membranes of mouse, Am. J. Pathol. 43: 929–943.PubMedGoogle Scholar
  226. Minor, R. R., Hoch, P. S., Koszalka, T. R., Brent, R. L. and Kefalides, N. A., 1976a, Organ cultures of embryonic rat parietal yolk sac. I. Morphological and autoradiographic studies of the deposition of the collagen and noncollagen glycoprotein components of basement membrane, Dev. Biol. 48: 344–364.PubMedGoogle Scholar
  227. Minor, R. R., Strause, E. L., Koszalka, T. R., Brent, R. L., and Kefalides, N. A., 1976b, Organ cultures of the embryonic rat parietal yolk sac. II. Synthesis, accumulation, and turnover of collagen and noncollagen basement membrane glycoproteins, Dev. Biol. 48: 365–376.PubMedGoogle Scholar
  228. Mintz, B., 1964, Synthetic processes in early development in mammalian egg, J. Exp. Zool. 157: 273–292.PubMedGoogle Scholar
  229. Mintz, B., and Illmensee, K., 1975, Normal genetically mosaic mice produced from malignant teratocarcinoma cells, Proc. Natl. Acad. Sci. USA 72: 3585–3589.PubMedGoogle Scholar
  230. Miyauchi, T., Yonezawa, S., Takamura, T., Chiba, T., Tejima, S., Ozawa, M., Sato, E., and Muramatsu, T., 1982, A new fucosyl antigen expressed on colon adenocarcinoma and embryonal carcinoma cells, Nature (London) 299: 168–170.Google Scholar
  231. Mizoguchi, A., Mizuochi, T., and Kobata, A., 1982, Structures of the carbohydrate moieties of secretory component purified from human milk, J. Biol. Chem. 257: 9612–9621.PubMedGoogle Scholar
  232. Moghissi, K. S., and Marks, C., 1971, Effects of microdose norgestrel on endogenous gonadotropic and steroid hormones, cervical mucus properties, vaginal cytology and endometrium, Fertil. Steril. 22: 424–434.PubMedGoogle Scholar
  233. Mosesson, M. W., and Umfleet, R. A., 1970, The cold insoluble globulin of human plasma, J. Biol. Chem. 245: 5728–5736.PubMedGoogle Scholar
  234. Mosher, D. F., 1980, Fibronectin, Prog. Hemostasis Thromb. 5: 111–151.Google Scholar
  235. Muggleton-Harris, A. L., and Johnson, M. H., 1976, Nature and distribution of serologically detectable alloantigens on preimplantation mouse embryo, J. Embryol. Exp. Morphol. 35: 59–72.PubMedGoogle Scholar
  236. Mulnard, J., and Huygens, R., 1978, Ultrastructural localization of nonspecific alkaline phosphatase during cleavage and blastocyst formation in mouse, J. Embryol. Exp. Morphol. 44: 121–131.PubMedGoogle Scholar
  237. Muramatsu, H., and Muramatsu, T., 1982, Decreased synthesis of large fucosyl glycopeptides during differentiation of embryonal carcinoma cells induced by retinoic acid and dibutyryl cyclic AMP, Dev. Biol. 90: 441–444.PubMedGoogle Scholar
  238. Muramatsu, H., Muramatsu, T., and Avner, P., 1982, Biochemical properties of the highmolecular-weight glycopeptides released from the cell surface of human teratocarcinoma cells, Cancer Res. 42: 1749–1752.PubMedGoogle Scholar
  239. Muramatsu, T., Gachelin, G., Nicolas, J. F., Condamine, H., Jakob, H., and Jacob, F., 1978, Carbohydrate structure and cell differentiation: Unique properties of fucosylglycopeptides isolated from embryonal carcinoma cells, Proc. Natl. Acad. Sci. USA 75: 2315–2319.PubMedGoogle Scholar
  240. Muramatsu, T., Gachelin, G., and Jacob, F., 1979, Characterization of glycopeptides isolated from membranes of F9 embryonal carcinoma cells, Biochim. Biophys. Acta 587: 392–406.PubMedGoogle Scholar
  241. Muramatsu, T., Condamine, H., Gachelin, G., and Jacob, F., 1980, Changes in fucosylglycopeptides during early post-implantation embryogenesis in the mouse, J. Embryol. Exp. Morphol. 57: 25–36.PubMedGoogle Scholar
  242. Nadijcka, M., and Hillman, N., 1974, Ultrastructural studies of the mouse blastocyst substages, J. Embryol. Exp. Morphol. 32: 675–695.PubMedGoogle Scholar
  243. Narasimhan, S., Stanley, P., and Schachter, H., 1977, Control of glycoprotein synthesis: Lectin resistant mutant containing only one of two distinct N-acetylglucosaminyl transferase activities present in wild type Chinese hamster ovary cells, J. Biol. Chem. 252: 3926–3933.PubMedGoogle Scholar
  244. Nicolas, J. F., Dubois, P., Jakob, H., Gaillard, J., and Jacob, F., 1975, Teratocarcinome de la souris: Differenciation en culture d’une lignee de cellules primitives a potentialites multiples, Ann. Microbiol. (Inst. Pasteur) 126 A, 3–22.Google Scholar
  245. Nicolas, J. F., Kemler, R., and Jacob, F., 1981, Effects of anti-embryonal carcinoma sera on aggregation and metabolic cooperation between teratocarcinoma cells, Dev. Biol. 81: 127–132.PubMedGoogle Scholar
  246. Nicolson, G. L., and Yanagimachi, R., 1972, Terminal saccharides on sperm plasma membranes: Identification with specific agglutinins, Science 177: 276–279.PubMedGoogle Scholar
  247. Nicolson, G. L., Usuni, N., Yanagimachi, R., Yanagimachi, H., and Smith, J. R., 1977, Lectin binding sites on the plasma membranes of rabbit spermatozoa: Changes in surface receptors during epididymal migration and after ejaculation, J. Cell Biol. 74: 950–962.PubMedGoogle Scholar
  248. Nicolson, G. L., Brodginski, A. B., Beattie, G., and Yanagimachi, R., 1979, Cell surface changes in the properties of rabbit spermatozoa during epididymal passage, Gam. Res. 2: 153–162.Google Scholar
  249. Nilsson, O. S., De Tomas, M. E., Peterson, E., Bergman, A., Dallner, G., and Hemming, F. W., 1978, Mannosylation of endogenous proteins of rough and smooth endoplasmic reticulum and of Golgi membranes, Eur. J. Biochem. 89: 619–628.PubMedGoogle Scholar
  250. Nimmo, H. G., and Cohen, P., 1977, Adv. Cyclic Nucleotide Res. 8: 146–266.Google Scholar
  251. Nishimune, Y., Ogiso, Y., Kume, A., Matsushiro, A., and Noguchi, T., 1982, Identification of reversible and irreversible stages during the differentiation of pluripotent teratocarcinoma cell line, in: Teratocarcinoma and Embryonic Cell Interactions ( T. Muramatsu, G. Gachelin, A. A. Moscona, and Y. Ikawa, eds.), Japan Scientific Societies Press, Tokyo.Google Scholar
  252. Nuccitelli, R., and Jaffe, L. F., 1974, Spontaneous current pulses through developing fucoid eggs, Proc. Natl. Acad. Sci. USA 71: 4855–4859.PubMedGoogle Scholar
  253. Nudelman, E., Hakomori, S.-I., Knowles, B. B., Solter, D., Nowinski, R. C., Tam, M. R., and Young, W. W., 1980, Monoclonal antibodies directed to the stage specific embryonic antigen (SSEA-1) react with a branched glycosphingolipid similar in structure to Ii antigen, Biochem. Biophys. Res. Commun. 97: 443–451.PubMedGoogle Scholar
  254. Oberbaumer, I., Wiedermann, H., Timpl, R., and Kühn, K., 1982, Shape and assembly of type IV procollagen from cell culture, EMBO J 1: 805–810.PubMedGoogle Scholar
  255. O’Brien, D. A., and Belive, A. R., 1980a, Protein constituents of the mouse spermatozoon, Dey. Biol. 75: 405–418.Google Scholar
  256. O’Brien, D. A., and Bellve, A. R., 1980b, Protein constituents of the mouse spermatozoon: An electrophoretic characterization, Dey. Biol. 75: 386–404.Google Scholar
  257. Ogiso, Y., Akinori, A., Nishimune, Y., and Matsushiro, A., 1982, Reversible and irreversible stage in the transition of cell surface marker during the differentiation of pluripotent teratocarcinoma cell induced with retinoic acid, Exp. Cell Res. 137: 365–372.PubMedGoogle Scholar
  258. Oldberg, A., Hayman, E. G., and Ruoslahti, E., 1981, Isolation of a chondroitin sulfate proteoglycan from a rat yolk sac tumor and immunochemical demonstration of its cell surface localization, J. Biol. Chem. 256: 10847–10852.PubMedGoogle Scholar
  259. Oliphant, G., and Brachet, B. G., 1973, Capacitation of mouse spermatozoa in media with elevated ionic strength and reversible decapacitation with epididymal extract, Fertil. Steril. 24: 948–955.PubMedGoogle Scholar
  260. Opheim, D. J., and Touster, O., 1978, Lysosomal a-D-mannosidase of rat liver: Purification and comparison with the Golgi and cytosolic a-D-mannosidases, J. Biol. Chem. 253: 1017–1023.PubMedGoogle Scholar
  261. Oppenheimer, S. B., 1975, Functional involvement of specific carbohydrate in teratoma cell adhesion factor, Exp. Cell Res. 92: 122–126.PubMedGoogle Scholar
  262. Orgebin-Christ, M. C., 1969, Maturation of spermatozoa in the rabbit epididymis: Fertilizating ability and embryonic mortality in does inseminated with epididymal spermatozoa, Ann. Biol. Anim. Biochim. Biophys. 7: 373–389.Google Scholar
  263. Oshima, R. G., 1981, Identification and immunoprecipitation of cytoskeletal proteins from murine extra-embryonic endodermal cells, J. Biol. Chem. 256: 8124–8133.PubMedGoogle Scholar
  264. Oshima, R. G., 1982, Developmental expression of murine extra-embryonic endodermal cytoskeletal proteins, J. Biol. Chem. 257: 3414–3421.PubMedGoogle Scholar
  265. Oshima, R. G., and Linney, E., 1980, Identification of murine extraembryonic endodermal cells by reaction with teratocarcinoma basement membrane antiserum, Exp. Cell Res. 126: 485–490.PubMedGoogle Scholar
  266. Palm, J., Heyner, S., and Brinster, R. L., 1971, Differential immunofluorescence of fertilized mouse eggs with H-2 and non H-2 antibody, J. Exp. Med. 133: 1282–1293.PubMedGoogle Scholar
  267. Papaioannou, V. E., McBurney, M. W., and Gardner, R. L., 1975, Fate of teratocarcinoma cells injected into early mouse embryos Nature (London) 258: 70–75.Google Scholar
  268. Parodi, A. J., and Leloir, L. F., 1979, Protein glycosylation through lipid-linked intermediates, Biochim. Biophys. Acta 559: 1–37.PubMedGoogle Scholar
  269. Parodi, A. J., Behrens, N. H., Leloir, L. F., and Carminatti, H., 1972, The role of polyisoprenol-bound saccharides as intermediates in glycoprotein biosynthesis in liver, Proc. Natl. Acad. Sc., USA 69: 3268–3272.Google Scholar
  270. Paulson, J. C., Prieels, J. P., Glasgow, L. R., and Hill, R. L., 1978, Sialyl and fucosyltransferases in the biosynthesis of asparagine-linked oligosaccharides in glycoproteins, J. Biol. Chem. 253: 5617–5624.PubMedGoogle Scholar
  271. Pederson, R. A., Spindle, A. I., and Wiley, L. M., 1977, Regeneration of endoderm by ectoderm isolated from mouse blastocysts, Nature (London) 270: 435–437.Google Scholar
  272. Pierce, G. B., 1965, Basement membranes. VI. Synthesis by epithelial tumors of the mouse, Cancer Res. 25: 656–663.PubMedGoogle Scholar
  273. Pierce, G. B., 1966, The development of basement membranes in the mouse embryo, Dey. Biol. 13: 231–249.Google Scholar
  274. Pierce, G. B., 1967, Teratocarcinoma: Model for a developmental concept of cancer, Curr. Top. Dey. Biol. 2: 223–246.Google Scholar
  275. Pierce, G. B., Midgley, A. R., Feldman, J. D., and Sri Ram, J., 1962, Parietal yolk sac carcinoma: Clue to the histogenesis of Reichert’s membrane of the mouse embryo, Am. J. Pathol. 41: 549–556.PubMedGoogle Scholar
  276. Pierce, G. B., Midgley, A. R., and Sri Ram, J., 1963, The histogenesis of basement membranes, J. Exp. Med. 117: 339–348.PubMedGoogle Scholar
  277. Pierce, G. B., Beals, T. F., Sri Ram, J., and Midgley, A. R., 1964, Basement membranes. IV. Epithelial origin and immunologic cross reactions, Am. J. Pathol. 45: 929–962.PubMedGoogle Scholar
  278. Pierce, G. B., Jones, A., Orfanakis, N. G., Nakame, P. K., and Lustig, L., 1982a, Biosynthesis of basement membrane by parietal yolk sac cells, Differentiation 23: 60–72.PubMedGoogle Scholar
  279. Pierce, G. B., Pantazis, C. G., Caldwell, J. E., and Wells, R. S., 1982b, Specificity of the control of tumor formation by the blastocyst, Cancer Res. 42: 1082–1087.PubMedGoogle Scholar
  280. Plet, A., Evain, D., and Anderson, W. B., 1982, Effect of retinoic acid treatment of F9 embryonal carcinoma cells on the activity and distribution of cyclic AMP-dependent protein kinase, J. Biol. Chem. 257: 889–893.PubMedGoogle Scholar
  281. Prujansky-Jacobovitz, A., Gachelin, G., Muramatsu, T., Sharon, N., and Jacob, F., 1979, Surface galactosyl glycopeptides of embryonal carcinoma cells, Biochem. Biophys. Res. Commun. 89: 448–455.Google Scholar
  282. Quaroni, A., Isselbacher, K. J., and Ruoslahti, E., 1978, Fibronectin synthesis by epithelial crypt cells of rat small intestine, Proc. Natl. Acad. Sci. USA 75: 5548–5552.PubMedGoogle Scholar
  283. Rao, C. N., Marguiles, I. M. K., Tralka, T. S., Terranova, V. P., Madri, J. A., and Liotta, L. A., 1982a, Isolation of a subunit of laminin and its role in molecular structure and tumor cell attachment, J. Biol. Chem. 257: 9740–9744.PubMedGoogle Scholar
  284. Rao, C. N., Marguiles, I. M. K., Goldfarb, R. H., Madri, J. A., Woodley, D. T., and Liotta, L. A., 1982b, Differential proteolytic susceptibility of laminin a and ß subunits, Arch. Biochem. Biophys. 219: 65–70.PubMedGoogle Scholar
  285. Rao, C. N., Barsky, S. H., Terranova, V. P., and Liotta, L. A., 1983, Isolation of a tumor cell laminin receptor, Biochem. Biphys. Res. Commun. 111: 804–808.Google Scholar
  286. Rasilo, M. L., 1980, Fractionation of large glycopeptides of human teratocarcinoma-derived cells by concanavalin A—Sepharose chromatography, Can. J. Biochem. 58: 281–286.PubMedGoogle Scholar
  287. Rasilo, M. L., Wartiovaara, J., and Renkonen, O., 1980, Mannose containing glycopeptides of cells derived from human teratocarcinoma, Can. J. Biochem. 58: 384–393.PubMedGoogle Scholar
  288. Reeve, J. W. R., and Ziomek, C. A., 1981, Distribution of microvilli on dissociated blastomeres from mouse embryos: Evidence for surface polarization at compaction, J. Embryol. Exp. Morphol. 62: 339–350.PubMedGoogle Scholar
  289. Reeve, W. J. D., 1981, Cytoplasmic polarity develops at compaction in rat and mouse embryos, J. Embryol. Exp. Morphol. 62: 351–367.PubMedGoogle Scholar
  290. Reisner, Y., Gachelin, G., Dubois, P., Nicolas, J. F., Sharon, N., and Jacob, F., 1977, Interaction of peanut agglutinin, a lectin specific for nonreducing terminal D-galactosyl residues with embryonal carcinoma cells, Dev. Biol. 61: 20–27.PubMedGoogle Scholar
  291. Rose, M. C., Lynn, W. S., and Kaufman, B., 1970, Resolution of the major components of human lung mucosal gel and their capabilities for reaggregation and gel formation, Biochemistry 18: 4030–4037.Google Scholar
  292. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids 5: 270–297.PubMedGoogle Scholar
  293. Rosenthal, M. D., Wishnow, R. M., and Sato, G. M., 1970, In vitro growth and differentiation of clonal populations of multipotential mouse cells derived from a transplantable testicular teratocarcinoma, J. Natl. Cancer Inst. 44: 1001–1014.PubMedGoogle Scholar
  294. Rosenstraus, M. J., and Levine, A. J., 1979, Alterations in the developmental potential of embryonal carcinoma cells in mixed aggregates of pluripotent and nullipotent cells, Cell 17: 337–346.PubMedGoogle Scholar
  295. Rosenstraus, M. J., and Spadoro, J. P., 1981, Autonomy of “nullipotent” and pluripotent embryonal carcinoma cells in differentiating aggregates, Dev. Biol. 85: 190–198.PubMedGoogle Scholar
  296. Rosenstraus, M. J., Sundell, C. L., and Liskay, R. M., 1982, Cell-cycle characteristics of undifferentiated and differentiating embryonal carcinoma cells, Dev. Biol. 89: 516–520.PubMedGoogle Scholar
  297. Rossant, J., and Papaioannou, V.E., 1977, The biology of embryogenesis, in: Concepts In Mammalian Embryogenesis (M. 1. Sherman, ed.), pp. 1–36, MIT Press, Cambridge, Massachusetts.Google Scholar
  298. Rossant, J., and Lis, W. J., 1979, Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo, Dev. Biol. 70: 255–261.PubMedGoogle Scholar
  299. Rossant, J., and Ofer, L., 1977, Properties of extraembryonic ectoderm isolated from post-implantation mouse embryos, J. Embryol. Exp. Morphol. 39: 183–194.PubMedGoogle Scholar
  300. Rossant, J., and Vijh, K. M., 1980, Ability of outside cells from preimplantation mouse embryos to form inner cell mass derivatives, Dev. Biol. 76: 475–482.PubMedGoogle Scholar
  301. Rowinski, J., Solter, D., and Koprowski, H., 1976, Change of concanavalin A induced agglutinability during preimplantation mouse development, Exp. Cell. Res. 100: 404–408.PubMedGoogle Scholar
  302. Rubin, C. S., and Rosen, O. M., 1975, Protein phosphorylation, Annu. Rev. Biochem. 44: 831–887.PubMedGoogle Scholar
  303. Rugh, R., 1968, The Mouse: Its Reproduction and Development, Burgess, Minneapolis, Minn.Google Scholar
  304. Ruoslahti, E., and Vaheri, A., 1974, Novel human serum protein from fibroblast plasma membrane, Nature (London) 248: 789–791.Google Scholar
  305. Ruoslahti, E., Engvall, E., and Hayman, E. G., 1981, Fibronectin: Current concepts of its structure and function, Coll. Res. 1: 95–128.Google Scholar
  306. Sabatini, D. D., Kreibich, G., Morimoto, T., and Adesnick, M., 1982, Mechanisms for the incorporation of proteins in membranes and organelles, J. Cell Biol. 92: 1–22.PubMedGoogle Scholar
  307. Sadler, J. E., Rearick, J. I., and Hill, R. L., 1979, Purification to homogeneity and enzymatic characterization of an a-N-acetylgalactosaminide a,2–6 sialyl transferase from porcine submaxillary glands, J. Biol. Chem. 254: 5934–5941.PubMedGoogle Scholar
  308. Sakashita, S., and Rouslahti, E., 1980, Laminin-like glycoproteins in extracellular matrix of endodermal cells, Arch. Biochem. Biophys. 205: 283–290.PubMedGoogle Scholar
  309. Sato, K., 1979, Polyspermy preventing mechanisms in mouse eggs fertilized in vitro, J. Exp. Zool. 210: 353–360.PubMedGoogle Scholar
  310. Schachter, H., McGuire, E. J., and Roseman, S., 1971, Sialic acids. XIII. A uridine di-phosphate D-galactose:mucin galactosyltransferase from porcine submaxillary gland, J. Biol. Chem. 246: 5321–5328.PubMedGoogle Scholar
  311. Scheul, H., 1978, Secretory functions of egg cortical granules in fertilization and development: A “critical” review, Gam. Res. 1: 299–381.Google Scholar
  312. Schindler, J., Matthaei, K. I., and Sherman, M. I., 1981, Isolation and characterization of mouse mutant embryonal carcinoma cells which fail to differentiate in response to retinoic acid, Proc. Natl. Acad. Sci. USA 78: 1077–1080.PubMedGoogle Scholar
  313. Searle, R. F., and Jenkinson, E. J., 1978, Localization of trophoblast defined surface antigens during early mouse embryogenesis, J. Embryol. Exp. Morphol. 43: 147–156.PubMedGoogle Scholar
  314. Searle, R. F., Johnson, M. H., Billington, W. D., Elson, J., and Chutterbuck-Jackson, S., 1974, Investigation of H-2 and non H-2 antigens on mouse blastocyst, Transplantation 18: 136–141.PubMedGoogle Scholar
  315. Semoff, S., Hogan, B. L. M., and Hopkins, C. R., 1982, Localization of fibronectin, lamininentactin, and entactin in Reichert’s membrane by immunoelectronmicroscopy, EMBO J. 1: 1171–1175.PubMedGoogle Scholar
  316. Shapiro, B. M., and Eddy, E. M., 1980, When sperm meets egg: Biochemical mechanisms of gamete interaction, Int. Rev. Cytol. 66: 257–302.PubMedGoogle Scholar
  317. Sherman, M. I., 1975, Differentiation of teratoma cell line PCC4: azal in vitro, in: Teratomas and Differentiation ( M. I. Sherman and D. Solter, eds.), pp. 189–205, Academic Press, New York.Google Scholar
  318. Sherman, M. I., 1979, Developmental biochemistry of preimplantation mammalian embryos, Annu. Rev. Biochem. 48: 443–470.PubMedGoogle Scholar
  319. Sherman, M. I., and Miller, R. A., 1978, F9-embryonal carcinoma cells can differentiate into endoderm-like cells, Dev. Biol. 63: 27–34.PubMedGoogle Scholar
  320. Sherman, M. I., and Wudl, L. W., 1976, The implanting mouse blastocyst, in: The Cell Surface in Animal Embryogenesis and Development ( G. Poste and G. L. Nicolson, eds.), pp. 81–125, Elsevier/North-Holland, Amsterdam.Google Scholar
  321. Sherman, M. I., Gay, R., Gay, S., and Miller, E. J., 1980, Association of collagen with preimplantation and peri-implantation mouse embryos, Dev. Biol. 74: 470–478.PubMedGoogle Scholar
  322. Shur, B. D., 1982a, Evidence that galactosyltransferase is a surface receptor for poly(N)acetyllactosamine glycoconjugates on embryonal carcinoma cells, J. Biol. Chem. 257: 6871–6878.PubMedGoogle Scholar
  323. Shur, B. D., 1982b, Cell surface glycosyl transferase activities during fertilization and early embryogenesis, in: The Glycoconjugates ( M. Horowitz, ed.), Vol. III, pp. 145–185, Academic Press, New York.Google Scholar
  324. Shur, B. D., 1983, The role of cell surface galactosyltransferase in embryonal carcinoma cell adhesion, in: Teratocarcinoma Stem Cells ( L. Silver, G. Martin, and S. Strickland, eds.), pp. 185–195, Cold Spring Harbor Laboratory, New York.Google Scholar
  325. Shur, B. D., and Hall, N. G., 1982a, A role for mouse sperm surface galactosyl transferases in sperm binding to the egg zona pellucida, J. Cell Biol. 95: 574–579.PubMedGoogle Scholar
  326. Shur, B. D., and Hall, N. G., 1982b, Sperm surface galactosyl transferase activity during in vitro capacitation, J. Cell Biol. 95: 567–573.PubMedGoogle Scholar
  327. Smith, K. K., and Strickland, S., 1981, Structural components and characteristics of Reichert’s membrane, an extra-embryonic basement membrane, J. Biol. Chem. 256: 4654–4661.PubMedGoogle Scholar
  328. Smith, L. D., 1966, Role of germinal plasm in formation of primordial germ cells in Rana pipiens, Dev. Biol. 14: 330–347.PubMedGoogle Scholar
  329. Snider, M. D., Sultzman, L. A., and Robbins, P. W., 1980, Transmembrane location of oligosaccharide—lipid synthesis in microsomal vesicles, Cell 21: 385–392.PubMedGoogle Scholar
  330. Snow, M. H. L., 1973, Tetraploid mouse embryos produced by cytochalasin B during cleavage, Nature (London) 244: 513–515.Google Scholar
  331. Solter, D., and Knowles, B. B., 1975, Immunosurgery of mouse blastocysts, Proc. Natl. Acad. Sci. USA 72: 5099–5102.PubMedGoogle Scholar
  332. Solter, D., and Knowles, B. B., 1978, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc. Natl. Acad. Sci. USA 75: 5565–5569.PubMedGoogle Scholar
  333. Solter, D., and Knowles, B. B., 1979, Developmental stage-specific antigens during mouse embryogenesis, Curr. Top. Dev. Biol. 13: 139–165.PubMedGoogle Scholar
  334. Solter, D., Shevinsky, L., Knowles, B. B., and Strickland, S., 1979, The induction of antigenic changes in a teratocarcinoma stem cell line (F9) by retinoic acid, Dev. Biol. 70: 515–521.PubMedGoogle Scholar
  335. Speers, W. C., 1982 Conversion of malignant murine embryonal carcinomas to benign teratomas by chemical induction of differentiation in vivo, Cancer Res. 42: 1843–1849.PubMedGoogle Scholar
  336. Spindle, A. I., 1978, Trophoblast regeneration by inner cell masses isolated from cultured mouse embryos, J. Exp. Zool. 203: 483–489.PubMedGoogle Scholar
  337. Spiro, M. J., Spiro, R. G., and Bhoyroo, V. D., 1979, Glycosylation of proteins by oligosaccharide lipids, J. Biol. Chem. 254: 7668–7674.PubMedGoogle Scholar
  338. Spiro, R. G., 1970, Glycoproteins, Annu. Rev. Biochem. 39: 599–638.PubMedGoogle Scholar
  339. Spiro, R. G., and Spiro, M. J., 1979, Role of lipid-saccharide intermediates in glycoprotein biosynthesis, in: Glycoconjugate Research, Vol. 2 ( J. Gregory and R. Jeanloz eds.), pp. 613–636, Academic Press, New York.Google Scholar
  340. Stanley, P., 1980, Surface carbohydrate alterations of mutant mammalian cells selected for resistance to plant lectins in: The Biochemistry of Glycoproteins and Proteoglycans (W. J. Lennarz, ed.), pp. 161–189, Plenum Press, New York.Google Scholar
  341. Steinberg, M. S., 1958, On the chemical bonds between animal cells: A mechanism for type specific association, Am. Nat. 92: 65–82.Google Scholar
  342. Steinberg, M. S., 1963, Reconstruction of tissues by dissociated cells, Science 141: 401–408.PubMedGoogle Scholar
  343. Steinberg, M. S., 1970, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, J. Exp. Zool. 173: 395–434.PubMedGoogle Scholar
  344. Steinhardt, R., Zucker, R., and Schatten, G., 1977, Intracellular calcium release at fertilization in the sea urchin egg, Dev. Biol. 58: 185–196.PubMedGoogle Scholar
  345. Stern, P. L., and Willison, K. R., 1982, Cell surface markers of teratocarcinomas and embryos: Antibodies to Forssman antigen, in: Teratocarcinoma and Embryonic Cell Interaction ( T. Muramatsu, G. Gachelin, A. A. Moscona, and Y. Ikawa, eds.), pp. 87–101, Japan Scientific Societies Press, Tokyo.Google Scholar
  346. Stern, P. L., Willison, K. R., Lennox, E., Galfre, G., Milstein, C., Secher, D., Ziegler, A., and Springer, T., 1978, Monoclonal antibodies as probes for differentiation and tumor associated antigens—Forssman specificity on teratocarcinoma stem cells, Cell 14: 775–783.PubMedGoogle Scholar
  347. Stevens, L. C., 1967a, The biology of teratomas, Adv. Morphog. 6: 1–31.PubMedGoogle Scholar
  348. Stevens, L. C., 1967b, Origin of testicular teratomas from primordial germ cells in mice J. Natl. Cancer Inst. 38: 549–552.PubMedGoogle Scholar
  349. Stevens, L. C., 1970, The development of transplantable teratocarcinomas from intratesticular grafts of pre-and postimplantation mouse embryos, Dev. Biol. 21: 364–382.PubMedGoogle Scholar
  350. Stevens, L. C., and Little, C. C., 1954, Spontaneous testicular teratomas in an inbred strain of mice, Proc. Natl. Acad. Sci. USA 40: 1080–1085.PubMedGoogle Scholar
  351. Stevens, L. C., and Varnum, D. S., 1974, The development of teratomas from parthenogenetically activated ovarian mouse eggs, Dev. Biol. 37: 369–380.PubMedGoogle Scholar
  352. Strickland, S., and Mandavi, V., 1978, Induction of differentiation in teratocarcinoma stem cells by retinoic acid, Cell 15: 393–403.PubMedGoogle Scholar
  353. Strickland, S., and Sawey, M. J., 1980, Studies on the effects of retinoids on the differ- entiation of teratocarcinoma stem cells in vitro and in vivo, Dev. Biol. 78: 76–85.PubMedGoogle Scholar
  354. Strickland, S., Reich, E., and Sherman, M. I., 1976, Plasminogen activator in early embryogenesis: Enzyme production by trophoblast and parietal endoderm, Cell 9: 231–240.PubMedGoogle Scholar
  355. Strickland, S., Smith, K. K., and Marotti, M., 1980, Hormonal induction of differentiation in teratocarcinoma stem cells: Generation of parietal endoderm by retinoic acid and dibutyryl c-AMP, Cell 21: 347–356.PubMedGoogle Scholar
  356. Struck, D. K., and Lennarz, W. J., 1980, The function of oligosaccharide lipids in the synthesis of glycoproteins, in: The Biochemistry of Glycoproteins and Proteoglycans ( W. J. Lennarz, ed.), pp. 35–83, Plenum Press, New York.Google Scholar
  357. Surani, M. A. H., 1979, Glycoprotein synthesis and inhibition of glycosylation by tunicamycin in preimplantation embryos, Cell 18: 217–227.PubMedGoogle Scholar
  358. Surani, M. A. H., Kimber, S. J., and Handyside, A. H., 1981, Synthesis and role of cell surface glycoproteins in preimplantation mouse development, Exp. Cell Res. 133: 331–339.PubMedGoogle Scholar
  359. Szollosi, D., 1976, Development of cortical granules and the cortical reaction in rat and hamster eggs, Anat. Rec. 159: 439–446.Google Scholar
  360. Szulman, A. E., 1964, The histological distribution of the blood group substances in man as disclosed by immunofluorescence, J. Exp. Med. 199: 503–516.Google Scholar
  361. Tabas, I., and Kornfeld, S., 1978, Identification of an a-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides, J. Biol. Chem. 253: 7779–7783.PubMedGoogle Scholar
  362. Tabas, I., Schlesinger, S., and Kornfeld, S., 1978, The processing of high mannose oligosaccharides to form complex-type oligosaccharides in the newly synthesised polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain, J. Biol. Chem. 253: 716–725.PubMedGoogle Scholar
  363. Takasaki, S., Yamashita, K., Suzuki, K., Iwanaga, S., and Kobata, A., 1979, The sugar chains of cold-insoluble globulin, J. Biol. Chem. 254: 8548–8553.PubMedGoogle Scholar
  364. Takeichi, M., Atsumi, T., Yoshida, C., and Ogou, S. L, 1982, Molecular approaches to cell–cell recognition mechanisms in mammalian embryos, in: Teratocarcinoma and Embryonic Cell Interactions ( T. Muramatsu, G. Gachelin, A. A. Moscona, and Y. Ikawa, eds.), pp. 283–293, Japan Scientific Societies Press, Tokyo.Google Scholar
  365. Tarkowski, A. K., 1961, Mouse chimeras developed from fused eggs, Nature (London) 190: 857–859.Google Scholar
  366. Tarkowski, A. K., 1965, Embryonic and postnatal development of mouse chimeras, in: Preimplantation Stages of Pregnancy, pp. 183–193, Churchill, London.Google Scholar
  367. Tarkowski, A. K., and Wroblewska, J., 1967, Development of blastomeres of mouse eggs isolated at 4- and 8-cell stage, J. Embryol. Exp. Morphol. 18: 155–180.PubMedGoogle Scholar
  368. Terranova, V. P., Rohrbach, D. M., and Martin, G. R., 1980, Role of laminin in the attachment of PAMZIZ (Epithelial) cells to basement membrane collagen, Cell 22: 719–726.PubMedGoogle Scholar
  369. Terranova, V. P., Liotta, L. A., Russo, R. G., and Martin, G. R., 1982, Role of laminin in the attachment and metastasis of murine tumor cells, Cancer Res. 42: 2265–2269.PubMedGoogle Scholar
  370. Terranova, V. P., Rao, C. N., Kabelic, T., Marguiles, I. M., and Liotta, L. A., 1983, Laminin receptor on human breast carcinoma cells, Proc. Natl. Acad. Sci. USA 80: 444–448.PubMedGoogle Scholar
  371. Timpl, R., Rhode, H., Gehron Robey, P., Rennard, S. I., Foidart, J. M., and Martin, G. R., 1979, Laminin—A glycoprotein from basement membranes, J. Biol. Chem. 254: 9933–9937.PubMedGoogle Scholar
  372. Tryggvason, K., Gehron Robey, P., and Martin, G. R., 1980, Biosynthesis of type IV pro-collagens, Biochemistry 19: 1284–1289.PubMedGoogle Scholar
  373. Tulsiani, D. R. P., Opheim, D. J., and Touster, O., 1977, Purification and characterization of a-o-mannosidase from rat liver Golgi membranes, J. Biol. Chem. 252: 3227–3233.PubMedGoogle Scholar
  374. Turco, S. J., and Robbins, P. W., 1977, The initial stages of processing of protein bound oligosaccharides in vitro, J. Biol. Chem. 254: 4560–4567.Google Scholar
  375. Ugalde, R. A., Staneloni, R. J., and Leloir, L. F., 1979, Microsomal glucosidases acting on the saccharide moiety of the glucose containing dolichyl diphosphate oligosaccharide, Biochem. Biophys. Res. Commun. 91: 1174–1181.PubMedGoogle Scholar
  376. Vacquier, V. D., 1975, The isolation of intact cortical granules from sea urchin eggs: Calcium ions trigger granule discharge, Dev. Biol. 43: 62–73.PubMedGoogle Scholar
  377. Vaheri, A., and Mosher, D. F., 1978, High molecular cell surface associated glycoprotein (fibronectin) lost in malignant transformation, Biochim. Biophys. Acta 516: 1–25.PubMedGoogle Scholar
  378. Van Blerkom, J., and Brockway, G. O., 1975, Quantitative patterns of protein synthesis in the preimplantation mouse embryo, Dev. Biol. 44: 148–157.PubMedGoogle Scholar
  379. Van Blerkom, J., and Manes, C., 1974. Development of preimplantation rabbit embryos in vivo and in vitro. Il. A comparison of quantitative aspects of protein synthesis, Der. Biol. 35: 262–282.Google Scholar
  380. Van Kooij, R. J., Roelofs, FI. J. M., Kathman, G. A. M., and Kramer, M. F., 1980, Cervical mucus and its mucous glycoprotein during the menstrual cycle, Fertil. Steril. 34: 226–233.PubMedGoogle Scholar
  381. Voss, B., Allam, S., and Rautenberg, J., 1979, Primary cultures of rat hepatocytes synthesize fibronectin, Biochem. Biophys. Res. Commun. 90: 1348–1354.PubMedGoogle Scholar
  382. Waechter, C. J., and Lennarz, W. J., 1978, The role of polyprenol-linked sugars in glycoprotein synthesis, Annu. Rev. Biochem. 45: 95–124.Google Scholar
  383. Wagner, D. D., Ivatt, R. J., Destree, A. T., and Hynes, R. O., 1981, Similarities and differences between the fibronectins of normal and transformed fibroblasts, J. Biol. Chem. 256: 11708–11715.PubMedGoogle Scholar
  384. Wartiovaara, J., and Vaheri, A., 1980, Fibronectin and early mammalian embryogenesis, in: Development in Mammals ( M. H., Johnson ed.), vol. 4, pp. 233–266, Elsevier North-Holland, Amsterdam.Google Scholar
  385. Wartiovaara, J., Leivo, I., Virtanen, I., Vaheri, A., and Graham, C. F., 1978, Appearance of fibronectin during differentiation of mouse teratocarcinoma in vitro, Nature (London) 272: 355–356.Google Scholar
  386. Wartiovaara, J., Leivo, I., and Vaheri, A., 1980, Matrix glycoproteins in early mouse development and in differentiation of teratocarcinoma cells, in: The Cell Surface: Mediator of Developmental Processes ( S. Subtelny and N. K. Wessels, eds.), pp. 305–328, Academic Press, New York.Google Scholar
  387. Webb, C. G., 1980, Characterization of antisera against mouse teratocarcinoma OTT6050: Molecular species recognized on embryoid bodies, preimplantation embryos, and sperm, Dev. Biol. 76: 203–214.PubMedGoogle Scholar
  388. Webb, C. G., Gall, E., and Edelman, G. M., 1977, Synthesis distribution of H-2 antigens in preimplantation mouse embryos, J. Exp. Med. 146: 923–932.PubMedGoogle Scholar
  389. Weil, A. J., 1965, The spermatozoa coating antigen (SCA) of the seminal vesicle, Ann N.Y. Acad. Sci. 124: 267–269.PubMedGoogle Scholar
  390. Weiss, B., and Strada, S. J., 1973, Adenosine 3’,5’-monophosphate during fetal and postnatal development, in: Fetal Pharmacology ( I. Boreus, ed.), pp. 205–235, Raven Press, New York.Google Scholar
  391. Wiley, L. D., and Calarco, P. G., 1975, Effects of immune sera and their localization to cell surface during preimplantation development, Dev. Biol. 47: 407–418.PubMedGoogle Scholar
  392. Wiley, L. M., Spindle, A. I., and Pedersen, R. A., 1978, Morphology of isolated mouse inner cell masses developing in vitro, Dev. Biol. 63: 1–10.PubMedGoogle Scholar
  393. Willison, K. R., and Stern, P. L., 1978, Expression of Forssman antigenic specificity in preimplantation mouse embryos, Cell 14: 785–793.PubMedGoogle Scholar
  394. Wilson, I. B., Bolton, E., and Cuttler, R. H., 1972, Preimplantation in mouse egg as revealed by microinjection of vital markers, J. Embryol. Exp. Morphol. 27: 467–479.PubMedGoogle Scholar
  395. Wolf, D. P., Sokoloski, J., Khan, M. A., and Litt, M., 1977, Human cervical mucus. 3. Isolation and characterization of rheologically active mucin, Fertil. Steril. 28: 53–58.PubMedGoogle Scholar
  396. Wolf, D. P., Blasco, L., Khan, M. A., and Litt, M., 1978, Human cervical mucus. 4. Viscoelasticity and sperm penetrability during ovulatory menstrual cycle, Fertil. Steril. 30: 163–169.PubMedGoogle Scholar
  397. Wolf, D. P., Sokoloski, J., and Litt, M., 1980, Composition and function of human cervical mucus, Biochim. Biophys. Acta 630: 545–558.PubMedGoogle Scholar
  398. Wolfe, J., Mautner, V., Hogan, B. L. M., and Tilly, R., 1979, Synthesis and retention of fibronectin (LETS protein) by mouse teratocarcinoma cells, Exp. Cell Res. 118: 63–71.PubMedGoogle Scholar
  399. Yamada, K. M., 1982, Biochemistry of fibronectin in: The Glycoconjugates (M. I. Horowitz, ed.), Vol. I II, Academic Press, New York.Google Scholar
  400. Yamada, K. M., and Olden, K., 1978, Fibronectins: Adhesive glycoproteins of cell surface and blood, Nature (London) 275: 179–184.Google Scholar
  401. Yamada, K. M., Kennedy, D. W., Kimata, K., and Pratt, R. M., 1980, Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments, J. Biol. Chem. 255: 6055–6063.PubMedGoogle Scholar
  402. Yanagimachi, R., 1981, Mechanisms of fertilization in mammals, in: Fertilization and Embryonic Development in Vitro ( L. Mastrionni and J. D. Biggers, eds.), pp. 81–182, Plenum Press, New York.Google Scholar
  403. Yanagimachi, R., Noda, Y. D., Fujimoto, M., and Nicolson, G. L., 1972, The distribution of negative surface charges on mammalian spermatozoa, Am. J. Anat. 135: 497–520.PubMedGoogle Scholar
  404. Yorewicz, E. C., and Moghissi, K. S., 1981, Purification of human midcycle cervical mucin and characterization of its oligosaccharides with respect to size, composition and microheterogeneity, J. Biol. Chem. 256: 11895–11904.Google Scholar
  405. Yoshida, C., and Takeichi, M., 1982, Teratocarcinoma cell adhesion: Identification of a cellsurface protein involved in calcium-dependent cell aggregation, Cell 28: 217–224.PubMedGoogle Scholar
  406. Zetter, B. R., and Martin, G. R., 1978, Expression of a high molecular weight cell surface glycoprotein (LETS protein) by preimplantation mouse embryos and teratocarcinoma stem cells, Proc. Natl. Acad. Sci. USA 75: 2324–2328.PubMedGoogle Scholar
  407. Ziomek, C. A., and Johnson, M. H., 1980, Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction, Cell 21: 935–942.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Raymond J. Ivatt
    • 1
  1. 1.Department of Tumor BiologyUniversity of Texas, M.D. Anderson Hospital and Tumor Institute at HoustonHoustonUSA

Personalised recommendations